Skip to main content

Advertisement

Log in

Role of secretory protease inhibitor SPINK3 in mouse uterus during early pregnancy

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Successful embryo implantation depends on intricate epithelial-stromal cross-talk. However, molecular modulators involved in this cellular communication remain poorly elucidated. Using multiple approaches, we have investigated the spatiotemporal expression and regulation of serine protease inhibitor Kazal type 3 (SPINK3) in mouse uterus during the estrous cycle and early pregnancy. In cycling mice, both SPINK3 mRNA and protein are only expressed during proestrus. In the pregnant mouse, the expression levels of both SPINK3 mRNA and protein increase on days 5-8 and then decline. Spink3 mRNA is expressed exclusively in the uterine glandular epithelium, whereas SPINK3 protein is localized on the surface of both luminal and glandular epithelium and in the decidua. Moreover, SPINK3 in the decidua has been observed in the primary decidual zone on day 6 and the secondary decidual zone on days 7-8; this is tightly associated with the progression of decidualization. SPINK3 has also been found in decidual cells of the artificially decidualized uterine horn but not control horn, whereas Spink3 mRNA localizes in the glands of both horns. The expression of endometrial Spink3 is not regulated by the blastocyst according to its expression pattern during pseudopregnancy and delayed implantation but is induced by progesterone and further augmented by a combination of progesterone and estrogen in ovariectomized mice. Thus, uterine-gland-derived SPINK3, as a new paracrine modulator, might play an important role in embryo implantation through its influence on stromal decidualization in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afonso S, Romagnano L, Babiarz B (1997) The expression and function of cystatin C and cathepsin B and cathepsin L during mouse embryo implantation and placentation. Development 124:3415–3425

    CAS  PubMed  Google Scholar 

  • Boettger-Tong H, Aarons D, Biegler B, Lee T, Poirier GR (1992) Competition between zonae pellucidae and a proteinase inhibitor for sperm binding. Biol Reprod 47:716–722

    Article  CAS  PubMed  Google Scholar 

  • Chappell PE, Lydon JP, Conneely OM, O'Malley BW, Levine JE (1997) Endocrine defects in mice carrying a null mutation for the progesterone receptor gene. Endocrinology 138:4147–4152

    Article  CAS  PubMed  Google Scholar 

  • Chen LY, Lin YH, Lai ML, Chen YH (1998) Developmental profile of a caltrin-like protease inhibitor, P12, in mouse seminal vesicle and characterization of its binding sites on sperm surface. Biol Reprod 59:1498–1505

    Article  CAS  PubMed  Google Scholar 

  • Cheon YP, Li Q, Xu X, DeMayo FJ, Bagchi IC, Bagchi MK (2002) A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol Endocrinol 16:2853–2871

    Article  CAS  PubMed  Google Scholar 

  • Crabtree JS, Zhang X, Peano BJ, Zhang Z, Winneker RC, Harris HA (2006) Development of a mouse model of mammary gland versus uterus tissue selectivity using estrogen- and progesterone-regulated gene markers. J Steroid Biochem Mol Biol 101:11–21

    Article  CAS  PubMed  Google Scholar 

  • Crabtree JS, Peano BJ, Zhang X, Komm BS, Winneker RC, Harris HA (2008) Activity of three selective estrogen receptor modulators on hormone-dependent responses in the mouse uterus and mammary gland. Mol Cell Endocrinol 287:40–46

    Article  CAS  PubMed  Google Scholar 

  • Das SK (2009) Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction 137:889–899

    Article  CAS  PubMed  Google Scholar 

  • Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, Wang H (2004) Molecular cues to implantation. Endocr Rev 25:341–373

    Article  CAS  PubMed  Google Scholar 

  • Fata JE, Chaudhary V, Khokha R (2001) Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod 65:680–688

    Article  CAS  PubMed  Google Scholar 

  • Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, Spencer TE (2001) Developmental biology of uterine glands. Biol Reprod 65:1311–1323

    Article  CAS  PubMed  Google Scholar 

  • Kazal LA, Spicer DS, Brahinsky RA (1948) Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J Am Chem Soc 70:3034–3040

    Article  CAS  PubMed  Google Scholar 

  • Kurita T, Lee K, Saunders PT, Cooke PS, Taylor JA, Lubahn DB, Zhao C, Makela S, Gustafsson JA, Dahiya R, Cunha GR (2001) Regulation of progesterone receptors and decidualization in uterine stroma of the estrogen receptor-alpha knockout mouse. Biol Reprod 64:272–283

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Jeong J, Kwak I, Yu CT, Lanske B, Soegiarto DW, Toftgard R, Tsai MJ, Tsai S, Lydon JP, DeMayo FJ (2006) Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet 38:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Lim H, Dey SK (1997) Prostaglandin E2 receptor subtype EP2 gene expression in the mouse uterus coincides with differentiation of the luminal epithelium for implantation. Endocrinology 138:4599–4606

    Article  CAS  PubMed  Google Scholar 

  • Lim H, Das SK, Dey SK (1998) erbB genes in the mouse uterus: cell-specific signaling by epidermal growth factor (EGF) family of growth factors during implantation. Dev Biol 204:97–110

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Louis H, Kakou A, Regnault V, Labat C, Bressenot A, Gao-Li J, Gardner H, Thornton SN, Challande P, Li Z, Lacolley P (2007) Role of alpha1beta1-integrin in arterial stiffness and angiotensin-induced arterial wall hypertrophy in mice. Am J Physiol Heart Circ Physiol 293:H2597–H2604

    Article  CAS  PubMed  Google Scholar 

  • Luo CW, Lin HJ, Gopinath SC, Chen YH (2004) Distinction of sperm-binding site and reactive site for trypsin inhibition on p12 secreted from the accessory sex glands of male mice. Biol Reprod 70:965–971

    Article  CAS  PubMed  Google Scholar 

  • Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA Jr, Shyamala G, Conneely OM, O'Malley BW (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9:2266–2278

    Article  CAS  PubMed  Google Scholar 

  • Ma XH, Hu SJ, Ni H, Zhao YC, Tian Z, Liu JL, Ren G, Liang XH, Yu H, Wan P, Yang ZM (2006) Serial analysis of gene expression in mouse uterus at the implantation site. J Biol Chem 281:9351–9360

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Zhao X, Das SK, Hogan BL, Dey SK (2002) Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Dev Biol 245:280–290

    Article  CAS  PubMed  Google Scholar 

  • Mills JS, Needham M, Parker MG (1987) A secretory protease inhibitor requires androgens for its expression in male sex accessory tissues but is expressed constitutively in pancreas. EMBO J 6:3711–3717

    CAS  PubMed  Google Scholar 

  • Ni H, Sun T, Ding NZ, Ma XH, Yang ZM (2002) Differential expression of microsomal prostaglandin E synthase at implantation sites and in decidual cells of mouse uterus. Biol Reprod 67:351–358

    Article  CAS  PubMed  Google Scholar 

  • Niinobu T, Ogawa M, Murata A, Nishijima J, Mori T (1990) Identification and characterization of receptors specific for human pancreatic secretory trypsin inhibitor. J Exp Med 172:1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Tsushima T, Ohba Y, Ogawa N, Tanaka S, Ishida M, Mori T (1985) Stimulation of DNA synthesis in human fibroblasts by human pancreatic secretory trypsin inhibitor. Res Commun Chem Pathol Pharmacol 50:155–158

    CAS  PubMed  Google Scholar 

  • Ohmuraya M, Hirota M, Araki M, Mizushima N, Matsui M, Mizumoto T, Haruna K, Kume S, Takeya M, Ogawa M, Araki K, Yamamura K (2005) Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice. Gastroenterology 129:696–705

    CAS  PubMed  Google Scholar 

  • Ohmuraya M, Hirota M, Araki K, Baba H, Yamamura K (2006) Enhanced trypsin activity in pancreatic acinar cells deficient for serine protease inhibitor Kzal type 3. Pancreas 33:104–106

    Article  PubMed  Google Scholar 

  • Ozaki N, Ohmuraya M, Hirota M, Ida S, Wang J, Takamori H, Higashiyama S, Baba H, Yamamura K (2009) Serine protease inhibitor Kazal type 1 promotes proliferation of pancreatic cancer cells through the epidermal growth factor receptor. Mol Cancer Res 7:1572–1581

    Article  CAS  PubMed  Google Scholar 

  • Paria BC, Tan J, Lubahn DB, Dey SK, Das SK (1999) Uterine decidual response occurs in estrogen receptor-alpha-deficient mice. Endocrinology 140:2704–2710

    Article  CAS  PubMed  Google Scholar 

  • Reponen P, Leivo I, Sahlberg C, Apte SS, Olsen BR, Thesleff I, Tryggvason K (1995) 92-kDa type IV collagenase and TIMP-3, but not 72-kDa type IV collagenase or TIMP-1 or TIMP-2, are highly expressed during mouse embryo implantation. Dev Dyn 202:388–396

    CAS  PubMed  Google Scholar 

  • Scheving LA (1983) Primary amino acid sequence similarity between human epidermal growth factor-urogastrone, human pancreatic secretory trypsin inhibitor, and members of porcine secretin family. Arch Biochem Biophys 226:411–413

    Article  CAS  PubMed  Google Scholar 

  • Schneider MR, Wolf E (2008) The epidermal growth factor receptor and its ligands in female reproduction: insights from rodent models. Cytokine Growth Factor Rev 19:173–181

    Article  CAS  PubMed  Google Scholar 

  • Sherwood RI, Jitianu C, Cleaver O, Shaywitz DA, Lamenzo JO, Chen AE, Golub TR, Melton DA (2007) Prospective isolation and global gene expression analysis of definitive and visceral endoderm. Dev Biol 304:541–555

    Article  CAS  PubMed  Google Scholar 

  • Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, Abbondanzo SJ (1992) Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359:76–79

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Raja S, Davis MK, Tawfik O, Dey SK, Das SK (2002) Evidence for coordinated interaction of cyclin D3 with p21 and cdk6 in directing the development of uterine stromal cell decidualization and polyploidy during implantation. Mech Dev 111:99–113

    Article  CAS  PubMed  Google Scholar 

  • Teesalu T, Blasi F, Talarico D (1996) Embryo implantation in mouse: fetomaternal coordination in the pattern of expression of uPA, uPAR, PAI-1 and alpha 2MR/LRP genes. Mech Dev 56:103–116

    Article  CAS  PubMed  Google Scholar 

  • Turpeinen U, Koivunen E, Stenman UH (1988) Reaction of a tumour-associated trypsin inhibitor with serine proteinases associated with coagulation and tumour invasion. Biochem J 254:911–914

    CAS  PubMed  Google Scholar 

  • Walmer DK, Wrona MA, Hughes CL, Nelson KG (1992) Lactoferrin expression in the mouse reproductive tract during the natural estrous cycle: correlation with circulating estradiol and progesterone. Endocrinology 131:1458–1466

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ohmuraya M, Hirota M, Baba H, Zhao G, Takeya M, Araki K, Yamamura K (2008) Expression pattern of serine protease inhibitor Kazal type 3 (Spink3) during mouse embryonic development. Histochem Cell Biol 130:387–397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Qing-Yuan Sun (Institute of Zoology, Chinese Academy of Sciences, China) and Prof. Lei Li (Institute of Zoology, Chinese Academy of Sciences, China) for their language editing of this article.

Declaration of interest

The authors declare no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the National Basic Research Program of China (grant number: 2006CB944007; 2006CB504006), the National Natural Science Foundation of China (grant number: 30770246), and Beijing Natural Science Foundation (grant number: 5071001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Pian Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Han, BC., Wang, RC. et al. Role of secretory protease inhibitor SPINK3 in mouse uterus during early pregnancy. Cell Tissue Res 341, 441–451 (2010). https://doi.org/10.1007/s00441-010-1013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1013-5

Keywords

Navigation