Skip to main content
Log in

Dominance of parental genomes in embryonic stem cell/fibroblast hybrid cells depends on the ploidy of the somatic partner

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Two dozen hybrid clones were produced by fusion of diploid embryonic stem (ES) cells positive for green fluorescent protein (GFP) with tetraploid fibroblasts derived from DD/c and C57BL-I(I)1RK mice. Cytogenetic analysis demonstrated that most cells from these hybrid clones contained near-hexaploid chromosome sets. Additionally, the presence of chromosomes derived from both parental cells was confirmed by polymerase chain reaction (PCR) analysis of polymorphic microsatellites. All hybrid cells were positive for GFP and demonstrated growth characteristics and fibroblast-like morphology. In addition, most hybrid cells were positive for collagen type I, fibronectin, and lamin A/C but were negative for Oct4 and Nanog proteins. Methylation status of the Oct4 and Nanog gene promoters was evaluated by bisulfite genomic sequencing analysis. The methylation sites (CpG-sites) of the Oct4 and Nanog gene promoters were highly methylated in hybrid cells, whereas the CpG-sites were unmethylated in the parental ES cells. Thus, the fibroblast genome dominated the ES genome in the diploid ES cell/tetraploid fibroblast hybrid cells. Immunofluorescent analysis of the pluripotent and fibroblast markers demonstrated that establishment of the fibroblast phenotype occurred shortly after fusion and that the fibroblast phenotype was further maintained in the hybrid cells. Fusion of karyoplasts and cytoplast derived from tetraploid fibroblasts with whole ES cells demonstrated that karyoplasts were able to establish the fibroblast phenotype of the reconstructed cells but not fibroblast cytoplasts. Thus, these data suggest that the dominance of parental genomes in hybrid cells of ES cell/somatic cell type depends on the ploidy of the somatic partner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ambrosi DJ, Tanasijevic D, Kaur A, Obergfell C, O'Neill RJ, Krueger W, Rasmussen TP (2007) Genome-wide reprogramming in hybrids of somatic cells and embryonic stem cells. Stem Cells 25:1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Axelrod DE, Gopalakrishnan TV, Willing M, Anderson WF (1978) Maintenance of hemoglobin inducibility in somatic cell hybrids of tetraploid (2S) mouse erythroleukemia cells with mouse or human fibroblasts. Somat Cell Genet 4:157–168

    Article  CAS  PubMed  Google Scholar 

  • Battulin NR, Prisyazhnyuk IE, Matveeva NM, Fishman VS, Vasilkova AA, Serov OL (2009) Allelic expression and DNA methylation profiles of promoters at the parental Oct4 and Nanog genes in Mus musculus ES cell/Mus caroli splenocyte hybrid cells. Cell Tissue Res 337:439–444

    Article  CAS  PubMed  Google Scholar 

  • Blau YM, Chiu C-P, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterokaryons. Cell 32:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Brown JE, Weiss MC (1975) Activation of production of mouse liver enzymes in rat hepatoma-mouse lymphoid cell hybrids. Cell 6:481–494

    Article  CAS  Google Scholar 

  • Bussolati G, Marchiò C, Gaetano L, Lupo R, Sapino A (2008) Pleomorphism of the nuclear envelope in breast cancer: a new approach to an old problem. J Cell Mol Med 12:209–218

    Article  PubMed  Google Scholar 

  • Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24:177–185

    Article  CAS  PubMed  Google Scholar 

  • Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    Article  CAS  PubMed  Google Scholar 

  • Davidson RL (1972) Regulation of melanin synthesis in mammalian cells: effect of gene dosage on the expression differentiation. Proc Natl Acad Sci USA 69:951–955

    Article  CAS  PubMed  Google Scholar 

  • Davidson RL, Benda P (1970) Regulation of specific functions of glial cells in somatic hybrids.II. Control of inducibility of glycerol-3-phosphate dehybrodgenase. Proc Natl Acad Sci USA 67:1870–1877

    Article  CAS  PubMed  Google Scholar 

  • Disseroth A, Velez R, Burk RD, Minna J, Anderson WF, Nienhuis A (1976) Extinction of globin gene expression in human fibroblast x mouse erythroleukemia cell hybrids. Somat Cell Genet 2:373–384

    Article  Google Scholar 

  • Do JT, Schöler HR (2004) Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22:941–949

    Article  CAS  PubMed  Google Scholar 

  • Fougère C, Ring E, Ephrussi B (1972) Gene dosage dependence of pigment synthesis in melanoma x fibroblast hybrids. Proc Natl Acad Sci USA 69:330–334

    Article  PubMed  Google Scholar 

  • Fricker M, Hollinshead M, White N, Vaux D (1997) Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular memrane-bound invaginations of the nuclear envelope. J Cell Biol 136:531–544

    Article  CAS  PubMed  Google Scholar 

  • Glauert AM, Lewis PR (1998) Biological specimen preparation for transmission electron microscopy. Portland, London

    Google Scholar 

  • Gopalakrishnan TV, Thompson EB, Anderson WF (1977) Extinction of hemoglobin inducibility in Friend erythroleukemia cells by fusion with cytoplasm of enucleated mouse neuroblastoma or fibroblast cells. Proc Natl Acad Sci USA 74:1642–1646

    Article  CAS  PubMed  Google Scholar 

  • Gorlov IP, Borodin PM (1995) Recombination in single and double heterozygotes for two partially overlapping inversions in chromosome 1 of the house mouse. Heredity 75:113–125

    Article  PubMed  Google Scholar 

  • Han DW, Do JT, Gentile L, Stehling M, Lee HT, Schöler HR (2008) Pluripotential reprogramming of the somatic genome in hybrid cells occurs with the first cell cycle. Stem Cells 26:445–454

    Article  CAS  PubMed  Google Scholar 

  • Kerkis AYu, Khristoliubova NB (1973) Method of choosing specific labeled cells for electron autoradiography. Tsitologia (Russian) 15:358–60

    Google Scholar 

  • Kruglova AA, Kizilova EA, Zhelezova AI, Gridina MM, Golubitsa AN, Serov OL (2008) Embryonic stem cell/fibroblast hybrid cells with near-tetraploid karyotype provide high yield of chimeras. Cell Tissue Res 334:371–380

    Article  CAS  PubMed  Google Scholar 

  • Lee RK, Lui PP, Ngan EK, Lui JC, Suen YK, Chan F, Kong SK (2006) The nuclear tubular invaginations are dynamic structures inside the nucleus of HeLa cells. Can J Physiol Pharmacol 84:477–86

    Article  CAS  PubMed  Google Scholar 

  • Lui PPY, Kong SK, Kwok TT, Lee CY (1998) The nucleus of HeLa cell contains tubular structures for Ca2+ signalling. Biochem Biophys Res Commun 247:88–93

    Article  CAS  PubMed  Google Scholar 

  • Lui PPY, Chan FL, Suen YK, Kwok TT, Kong SK (2003) The nucleus of HeLa cells contains tubular structures for Ca2+ signaling with the involvement of mitochondria. Biochem Biophys Res Commun 308:826–833

    Article  CAS  PubMed  Google Scholar 

  • Matveeva NM, Shilov AG, Kaftanovskaya EM, Maximovsky LF, Zhelezova AI, Golubitsa AN, Bayborodin SI, Fokina MM, Serov OL (1998) In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol Reprod Dev 50:128–138

    Article  CAS  PubMed  Google Scholar 

  • Matveeva NM, Pristyazhnyuk IE, Temirova SA, Menzorov AG, Vasilkova A, Shilov AG, Smith S, Serov OL (2005) Unequal segregation of parental chromosomes in embryonic stem cell hybrids. Mol Reprod Dev 71:305–314

    Google Scholar 

  • Menzorov AG, Matveeva NM, Larkin DM, Zaykin DV, Serov OL (2008) Fate of parental mitochondria in embryonic stem hybrid cells. Cell Tissue Biol 2:393–399

    Article  Google Scholar 

  • Orkin SH, Harosi FI, Leder P (1975) Differentiation in erythroleukemic cells and their somatic hybrids. Proc Natl Acad Sci USA 72:98–102

    Article  CAS  PubMed  Google Scholar 

  • Palermo A, Doyonnas R, Bhutani N, Pomerantz J, Alkan O, Blau HM (2009) Nuclear reprogramming in heterokaryons is rapid, extensive, and bidirectional. FASEB J 23:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Pells S, Di Domenico AI, Gallagher EJ, McWhir J (2002) Multipotentiality of neuronal cells after spontaneous fusion with embryonic stem cells and nuclear reprogramming in vitro. Clon Stem Cells 4:331–338

    Article  CAS  Google Scholar 

  • Pereira CF, Terranova R, Ryan NK, Santos J, Morris KJ, Gui W, Merkenschlager M, Fisher AG (2008) Heterokaryo-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PloS Genet 4:e1000170

    Article  PubMed  Google Scholar 

  • Peterson J, Weiss MC (1972) Expression of differentiated functions in hepatoma cell hybrids: induction of mouse albumin production in rat hepatoma-mouse fibroblast hybrids. Proc Natl Acad Sci USA 69:571–575

    Article  CAS  PubMed  Google Scholar 

  • Pratt T, Sharp L, Nichols J, Price DJ, Mason JO (2000) Embryonic stem cells and transgenic mice ubiquitously expressing a tau-tagged green fluorescent protein. Dev Biol 228:19–28

    Article  CAS  PubMed  Google Scholar 

  • Sumer H, Jones KL, Liu J, Rollo BN, van Boxtel AL, Pralong D, Verma PJ (2008) Transcriptional changes in somatic cells recovered from ES-somatic heterokaryons. Stem Cells Dev 18:1361–1368

    Article  Google Scholar 

  • Terranova R, Pereira CF, Du Roure C, Merkenschlager M, Fisher AG (2006) Acquisition and extinction of gene expression programs are separate events in heterokaryon reprogramming. J Cell Sci 119:2065–2072

    Article  CAS  PubMed  Google Scholar 

  • Vasilkova AA, Kizilova HA, Puzakov MV, Shilov AG, Zhelezova AI, Golubitsa AN, Battulin NR, Vedernikov VE, Menzorov AG, Matveeva NM, Serov OL (2007) Dominant manifestation of pluripotency in embryonic stem cell hybrids with various numbers of somatic chromosomes. Mol Reprod Dev 74:941–951

    Article  CAS  PubMed  Google Scholar 

  • Willing MC, Nienhuis AW, Anderson WF (1979) Selective activation of human ß- but not γ-globin gene in human fibroblast x mouse erythroleukemia cell hybrids. Nature 277:534–538

    Article  CAS  PubMed  Google Scholar 

  • Ying Q-L, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–547

    Article  CAS  PubMed  Google Scholar 

  • Zeuschner D, Mildner K, Zaehres H, Schöler HR (2009) Induced pluripotent stem cells at nano scale. Stem Cell Dev. doi:10.1089/scd.2009.0159

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by a grant from the Integrative Project 52 of Siberian Branch of Academy of Sciences of Russia and a grant from the Russian Fund for Basic Research (08-04-00825).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg L. Serov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruglova, A.A., Matveeva, N.M., Gridina, M.M. et al. Dominance of parental genomes in embryonic stem cell/fibroblast hybrid cells depends on the ploidy of the somatic partner. Cell Tissue Res 340, 437–450 (2010). https://doi.org/10.1007/s00441-010-0987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-0987-3

Keywords

Navigation