Skip to main content

Advertisement

Log in

Allelic expression and DNA methylation profiles of promoters at the parental Oct4 and Nanog genes in Mus musculus ES cell/Mus caroli splenocyte hybrid cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Expression of the parental Oct4 and Nanog alleles and DNA methylation of their promoters were studied in a set of Mus musculus embryonic stem (ES) cell/M. caroli splenocyte hybrid cells containing a variable ratio of parental chromosomes 6 and 17. The transcripts of the reactivated splenocyte Oct4 and Nanog genes were revealed in all hybrid cell clones positive for M. caroli chromosomes 6 and 17. We found that 11 CpG sites in the Oct4 promoter were heavily methylated in M. caroli splenocytes (>80%), whereas M. musculus ES cells were essentially unmethylated (<1%). Analysis of the methylation status of the Oct4 promoter in seven hybrid cell clones showed that the splenocyte-derived promoter sequence lost DNA methylation so that its methylation level was comparable with that of the ES cells. Additionally, no preferential de novo methylation was seen in the Oct4 promoters of M. musculus and M. caroli in teratomas developed from two independent hybrid clones. The upstream region of Nanog was heavily methylated in mouse embryonic fibroblasts (66%) and less methylated in M. caroli splenocytes (24%). The Nanog promoter region was completely unmethylated in M. musculus ES cells. We found that both parental alleles of the Nanog gene promoter were essentially unmethylated in five examined hybrid clones. Thus, we have demonstrated that (1) the Oct4 and Nanog genes of splenocytes are activated, and their promoters undergo demethylation in ES cell hybrids; (2) these events are independent of the number and ratio of parental chromosomes carrying these genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ambrosi DJ, Tanasijevic D, Kaur A, Obergfell C, O’Neill RJ, Krueger W, Rasmussen TP (2007) Genome-wide reprogramming in hybrids of somatic cells and embryonic stem cells. Stem Cells 25:1104–1113

    Article  PubMed  CAS  Google Scholar 

  • Caiafa P, Zampieri M (2005) DNA methylation and chromatin structure: the puzzling CpG islands. J Cell Biochem 94:257–265

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  PubMed  CAS  Google Scholar 

  • Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  PubMed  CAS  Google Scholar 

  • Constantinescu D, Gray HL, Sammak PJ, Schatten GP, Csoka AB (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24:177–185

    Article  PubMed  CAS  Google Scholar 

  • Cowan CA, Atienza J, Melton DA, Eggan K (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    Article  PubMed  CAS  Google Scholar 

  • Do JT, Schöler HR (2004) Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22:941–949

    Article  PubMed  CAS  Google Scholar 

  • Han DW, Do JT, Gentile L, Stehling M, Lee HT, Schöler HR (2008) Pluripotential reprogramming of the somatic genome in hybrid cells occurs with the first cell cycle. Stem Cells 26:445–454

    Article  PubMed  CAS  Google Scholar 

  • Hattori N, Imao Y, Nishino K, Hattori N, Ohgane J, Yagi S, Tanaka S, Shiota K (2007) Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 12:387–396

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Sebastiano V, Wu G, Araúzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, Boom D van den, Meyer J, Hübner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Schöler HR (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Tada M, Nakatsuji N, Tada T (2004) Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 24:5710–5720

    Article  PubMed  CAS  Google Scholar 

  • Kruglova AA, Kizilova EA, Zhelezova AI, Gridina MM, Golubitsa AN, Serov OL (2008) Embryonic stem cell/fibroblast hybrid cells with near-tetraploid karyotype provide high yield of chimeras. Cell Tissue Res 334:371–380

    Article  PubMed  CAS  Google Scholar 

  • Marikawa Y, Fujita TC, Alarco´n VB (2005) Heterogeneous DNA methylation status of the regulatory element of the mouse Oct4 gene in adult somatic cell population. Cloning Stem Cells 7:8–16

    Article  PubMed  CAS  Google Scholar 

  • Matveeva NM, Shilov AG, Baiborodin SI, Filimonenko VV, Rolinskaia IV, Serov OL (1996) Hybrids between murine embryonal stem and somatic cells maintain their pluripotency (in Russian). Dokl Akad Nauk 349:129–132

    PubMed  CAS  Google Scholar 

  • Matveeva NM, Shilov AG, Kaftanovskaya EM, Maximovsky LP, Zhelezova AI, Golubitsa AN, Bayborodin SI, Fokina MM, Serov OL (1998) In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol Reprod Dev 50:128–138

    Article  PubMed  CAS  Google Scholar 

  • Matveeva NM, Pristyazhnyuk IE, Temirova SA, Menzorov AG, Vasilkova A, Shilov AG, Smith A, Serov OL (2005) Unequal segregation of parental chromosomes in embryonic stem cell hybrids. Mol Reprod Dev 71:305–314

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  PubMed  CAS  Google Scholar 

  • Pells S, Di Domenico AI, Gallagher EJ, McWhir J (2002) Multipotentiality of neuronal cells after spontaneous fusion with embryonic stem cells and nuclear reprogramming in vitro. Cloning Stem Cells 4:331–338

    Article  PubMed  CAS  Google Scholar 

  • Pesce M, Schöler HR (2001) Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278

    Article  PubMed  CAS  Google Scholar 

  • Puzakov MV, Battulin NR, Temirova SA, Matveeva NM, Serdiukova NA, Grafodatskiĭ AS, Serov OL (2007) Analysis expression of parental alleles Xist and Gla in interspecific embryonic hybrid cells during induced in vitro inactivation of the X-chromosomes. Russ J Dev Biol 38:164–170

    Article  CAS  Google Scholar 

  • Silva J, Chambers I, Pollard S, Smith A (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature 44:997–1001

    Article  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: of mice and man. Annu Rev Cell Dev Biol 17:435–462

    Article  PubMed  CAS  Google Scholar 

  • Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  PubMed  CAS  Google Scholar 

  • Vasilkova AA, Kizilova HA, Puzakov MV, Shilov AG, Zhelezova AI, Golubitsa AN, Battulin NR, Vedernikov VE, Menzorov AG, Matveeva NM, Serov OL (2007) Dominant manifestation of pluripotency in embryonic stem cell hybrids with various numbers of somatic chromosomes. Mol Reprod Dev 74:941–951

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Fujita T, Low EV, Alarcon VB, Yanagimachi R, Marikawa Y (2006) Gradual DNA demethylation of the Oct4 promoter in cloned mouse embryos. Mol Reprod Dev 73:180–188

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Nichols J, Evans EP, Smith AG (2002) Changing potency by spontaneous fusion. Nature 416:545–547

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg L. Serov.

Additional information

This work was financially supported by grants from RFFI 08-04-00825 (Russia) and 48-2009 from SB RAS (Russia).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Battulin, N.R., Pristyazhnyuk, I.E., Matveeva, N.M. et al. Allelic expression and DNA methylation profiles of promoters at the parental Oct4 and Nanog genes in Mus musculus ES cell/Mus caroli splenocyte hybrid cells. Cell Tissue Res 337, 439–448 (2009). https://doi.org/10.1007/s00441-009-0835-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0835-5

Keywords

Navigation