Skip to main content
Log in

Plasticity and regulatory mechanisms of Hox gene expression in mouse neural crest cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In amniotes, the developmental potentials of neural crest cells differ between the cranium and the trunk. These differences may be attributable to the different expression patterns of Hox genes between cranial and trunk neural crest cells. However, little is known about the factors that control Hox genes expression in neural crest cells. The present data demonstrate that retinoic acid (RA) treatment and the activation of Wnt signaling induce Hoxa2 and Hoxd9 expression, respectively, in mouse mesencephalic neural crest cells, which never express Hox genes in vivo. Furthermore, Wnt signaling suppresses the induction of Hoxa2. We also demonstrate that these factors participate in the maintenance of Hoxa2 and Hoxd9 expression in mouse trunk neural crest cells. Our results suggest that RA and Wnt signaling function as environmental factors that regulate the expression of Hoxa2 and Hoxd9 in mouse neural crest cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abzhanov A, Tzahor E, Lassar AB, Tabin CJ (2003) Dissimilar regulation of cell differentiation in mesencephalic (cranial) and sacral (trunk) neural crest cells in vitro. Development 130:4567–4579

    Article  PubMed  CAS  Google Scholar 

  • Bel-Vialar S, Itasaki N, Krumlauf R (2002) Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129:5103–5115

    PubMed  CAS  Google Scholar 

  • Burke AC, Nelson CE, Morgan BA, Tabin C (1995) Hox genes and the evolution of vertebrate axial morphology. Development 121:333–346

    PubMed  CAS  Google Scholar 

  • Canning CA, Lee L, Irving C, Mason I, Jones CM (2007) Sustained interactive Wnt and FGF signaling is required to maintain isthmic identity. Dev Biol 305:276–286

    Article  PubMed  CAS  Google Scholar 

  • Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E, Kitajewski J, Arenas E (2003) Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci USA 100:12747–12752

    Article  PubMed  CAS  Google Scholar 

  • Chung EJ, Hwang SG, Nguyen P, Lee S, Kim JS, Kim JW, Henkart PA, Bottaro DP, Soon L, Bonvini P, Lee SJ, Karp JE, Oh HJ, Rubin JS, Trepel JB (2002) Regulation of leukemic cell adhesion, proliferation, and survival by β-catenin. Blood 100:982–990

    Article  PubMed  CAS  Google Scholar 

  • Ciruna B, Rossant J (2001) FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Couly G, Creuzet S, Bennaceur S, Vincent C, Le Douarin NM (2002) Interactions between Hox-negative cephalic neural crest cells and the foregut endoderm in patterning the facial skeleton in the vertebrate head. Development 129:1061–1073

    PubMed  CAS  Google Scholar 

  • Creuzet S, Couly G, Vincent C, Le Douarin NM (2002) Negative effect of Hox gene expression on the development of the neural crest-derived facial skeleton. Development 129:4301–4313

    PubMed  CAS  Google Scholar 

  • Deschamps J, Nes J van (2005) Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132:2931–2942

    Article  PubMed  CAS  Google Scholar 

  • Hall BK (1999) The neural crest in development and evolution. Springer, New York

    Google Scholar 

  • Hao Z, Yeung J, Wolf L, Doucette R, Nazarali A (1999) Differential expression of Hoxa-2 protein along the dorsal-ventral axis of the developing and adult mouse spinal cord. Dev Dyn 216:201–217

    Article  PubMed  CAS  Google Scholar 

  • Hunt P, Gulisano M, Cook M, Sham MH, Faiella A, Wilkinson D, Boncinelli E, Krumlauf R (1991) A distinct Hox code for the branchial region of the vertebrate head. Nature 353:861–864

    Article  PubMed  CAS  Google Scholar 

  • Ido A, Ito K (2006) Expression of chondrogenic potential of mouse trunk neural crest cells by FGF2 treatment. Dev Dyn 235:361–367

    Article  PubMed  CAS  Google Scholar 

  • Iimura T, Pourquié O (2007) Hox genes in time and space during vertebrate body formation. Dev Growth Differ 49:265–275

    PubMed  CAS  Google Scholar 

  • Irioka T, Watanabe K, Mizusawa H, Mizuseki K, Sasai Y (2005) Distinct effects of caudalizing factors on regional specification of embryonic stem cell-derived neural precursors. Brain Res Dev Brain Res 154:63–70

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Morita T (1995) Role of retinoic acid in mouse neural crest cell development in vitro. Dev Dyn 204:211–218

    PubMed  CAS  Google Scholar 

  • Ito K, Morita T, Sieber-Blum M (1993) In vitro clonal analysis of mouse neural crest development. Dev Biol 157:517–525

    Article  PubMed  CAS  Google Scholar 

  • Kappen C (1996) Theoretical approaches to the analysis of homeobox gene evolution. Comput Chem 20:49–59

    Article  PubMed  CAS  Google Scholar 

  • Korinek V, Barker N, Morin PJ, Wichen D van, Weger R de, Kinzler KW, Vogelstein B, Clevers H (1997) Constitutive transcriptional activation by a β-catenin-Tcf complex in APC-/- colon carcinoma. Science 275:1784–1787

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf R (1993) Hox genes and pattern formation in the branchial region of the vertebrate head. Trends Genet 9:106–112

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin NM, Kalcheim C (1999) The neural crest, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Le Douarin NM, Creuzet S, Couly G, Dupin E (2004) Neural crest cell plasticity and its limits. Development 131:4637–4650

    Article  PubMed  Google Scholar 

  • Liu JP, Laufer E, Jessell TM (2001) Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32:997–1012

    Article  PubMed  CAS  Google Scholar 

  • Maretto S, Cordenonsi M, Dupont S, Braghetta P, Broccoli V, Hassan AB, Volpin D, Bressan GM, Piccolo S (2003) Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci USA 100:3299–3304

    Article  PubMed  CAS  Google Scholar 

  • Martinsen BJ, Bronner-Fraser M (1998) Neural crest specification regulated by the helix-loop-helix repressor Id2. Science 281:988–991

    Article  PubMed  CAS  Google Scholar 

  • Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M, Ryan XP, Vonica CA, Brivanlou A, Dajani R, Crovace C, Tarricone C, Musacchio A, Roe SM, Pearl L, Greengard P (2003) GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol 10:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Ayer-Le Lièvre CS (1982) Mesectodermal capabilities of the trunk neural crest of birds. J Embryol Exp Morphol 70:1–18

    PubMed  CAS  Google Scholar 

  • Nakanishi K, Chan YS, Ito K (2007) Notch signaling is required for the chondrogenic specification of mouse mesencephalic neural crest cells. Mech Dev 124:190–203

    Article  PubMed  CAS  Google Scholar 

  • Noden DM (1978) The control of avian cephalic neural crest cytodifferentiation. I. Skeletal and connective tissues. Dev Biol 67:296–312

    Article  PubMed  CAS  Google Scholar 

  • Noden DM (1983) The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96:144–165

    Article  PubMed  CAS  Google Scholar 

  • Nordström U, Maier E, Jessell TM, Edlund T (2006) An early role for WNT signaling in specifying neural patterns of Cdx and Hox gene expression and motor neuron subtype identity. PLoS Biol 4:1438–1452

    Google Scholar 

  • Prince V, Lumsden A (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120:911–923

    PubMed  CAS  Google Scholar 

  • Rockman SP, Currie SA, Ciavarella M, Vincan E, Dow C, Thomas RJ, Phillips WA (2001) Id2 is a target of the β-catenin/T cell factor pathway in colon carcinoma. J Biol Chem 276:45113–45119

    Article  PubMed  CAS  Google Scholar 

  • Santagati F, Minoux M, Ren SY, Rijli FM (2005) Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis. Development 132:4927–4936

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    Article  PubMed  CAS  Google Scholar 

  • Tetsu O, McCormick F (1999) β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  PubMed  CAS  Google Scholar 

  • Trainor PA, Krumlauf R (2000a) Plasticity in mouse neural crest cells reveals a new patterning role for cranial mesoderm. Nat Cell Biol 2:96–102

    Article  PubMed  CAS  Google Scholar 

  • Trainor PA, Krumlauf R (2000b) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 1:116–124

    Article  PubMed  CAS  Google Scholar 

  • Trainor PA, Ariza-McNaughton L, Krumlauf R (2002) Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295:1288–1291

    Article  PubMed  CAS  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following investigators for generous gifts of materials: Drs. Jane B. Trepel (pcDNA3 expression vector encoding the human dn TCF and pcDNA4 expression vector encoding the mouse dn β-catenin) and Adil J. Nazarali (rabbit anti-Hoxa2 antibody).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, S., Ito, K. Plasticity and regulatory mechanisms of Hox gene expression in mouse neural crest cells. Cell Tissue Res 337, 381–391 (2009). https://doi.org/10.1007/s00441-009-0827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0827-5

Keywords

Navigation