Skip to main content

Neural Crest Formation and Diversification

  • Chapter
  • First Online:
Neural Development and Stem Cells

Abstract

The neural crest is a multipotent embryonic cell population that migrates throughout the embryo and differentiates into a variety of derivatives. Formation of neural crest begins at gastrulation and continues throughout neurulation. Bona fide neural crest cells then emerge from the neural tube after its closure and commence migration to many, destinations. During early induction stages, the cells of the neural plate border are exposed to different environment signals originated from the adjacent tissues. Such signals are responsible for the activation of a gene regulatory network that controls neural crest formation. This regulatory network comprises transcription factors and signaling molecules arranged hierarchically and acts to endow these cells with the ability to delaminate, migrate, and differentiate. This chapter is an overview of the molecular mechanisms underlying neural crest induction, specification, and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Le Douarin NM, Kalcheim C (1999) The neural crest. 2nd edn. Cambridge University Press, New York

    Google Scholar 

  2. Hall BKH, Hörstadius S (1988) The neural crest. Oxford University Press, Oxford

    Google Scholar 

  3. Morrison SJ, White PM, Zock C, Anderson DJ (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96:737–749

    PubMed  CAS  Google Scholar 

  4. His W (1868) Untersuchungen ĂĽber die erste Anlage des Wirbeltierleibes Die erste Entwickelung des HĂĽhnchens im Ei. FCW Vogel, Leipzig

    Google Scholar 

  5. Stone LS (1922) Experiments on the development of the cranial ganglia and the lateral line sense organs in amblystoma punctatum. J Exp Zool 35:421–496

    Google Scholar 

  6. Harrison RG (1938) Die Neuralleiste Erganzheft. Anat Anz 85:3–30

    Google Scholar 

  7. Sauka-Spengler T, Bronner-Fraser M (2008) A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9:557–568

    PubMed  CAS  Google Scholar 

  8. Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7:291–299

    PubMed  CAS  Google Scholar 

  9. Betancur P, Bronner-Fraser M, Sauka-Spengler T (2010) Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol 26(26):581–603

    PubMed  CAS  Google Scholar 

  10. Weinstein DC, Hemmati-Brivanlou A (1999) Neural induction. Annu Rev Cell Dev Biol 15:411–433

    PubMed  CAS  Google Scholar 

  11. Sasai Y, De Robertis EM (1997) Ectodermal patterning in vertebrate embryos. Dev Biol 182:5–20

    PubMed  CAS  Google Scholar 

  12. Ledouarin NM, Fontaineperus J, Couly G (1986) Cephalic ectodermal placodes and neurogenesis. Trends Neurosci 9:175–180

    Google Scholar 

  13. Webb JF, Noden DM (1993) Ectodermal placodes—contributions to the development of the vertebrate head. Am Zool 33:434–447

    Google Scholar 

  14. Labonne C, Bronner-Fraser M (1999) Molecular mechanisms of neural crest formation. Annu Rev Cell Dev Biol 15:81–112

    PubMed  CAS  Google Scholar 

  15. Bronner-Fraser M (1986) Analysis of early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol 115:44–55

    PubMed  CAS  Google Scholar 

  16. Bronner-Fraser M, Fraser SE (1988) Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335:161–164

    PubMed  CAS  Google Scholar 

  17. Collazo A, Bronnerfraser M, Fraser SE (1993) Vital dye labeling of Xenopus-laevis trunk neural crest reveals multipotency and novel pathways of migration. Development 118:363–376

    PubMed  CAS  Google Scholar 

  18. Serbedzija GN, Bronner-Fraser M, Fraser SE (1992) Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116:297–307

    PubMed  CAS  Google Scholar 

  19. Selleck MAJ, Bronner-Fraser M (1995) Origins of the avian neural crest: the role of neural plate-epidermis interactions. Development 121:525–538

    PubMed  CAS  Google Scholar 

  20. Sharma K, Korade Z, Frank E (1995) Late-migrating neuroepithelial cells from the spinal-cord differentiate into sensory ganglion-cells and melanocytes. Neuron 14:143–152

    PubMed  CAS  Google Scholar 

  21. Korade Z, Frank E (1996) Restriction in cell fates of developing spinal cord cells transplanted to neural crest pathways. J Neurosci 16:7638–7648

    PubMed  CAS  Google Scholar 

  22. Ruffins S, Artinger KB, Bronner-Fraser M (1998) Early migrating neural crest cells can form ventral neural tube derivatives when challenged by transplantation. Dev Biol 203:295–304

    PubMed  CAS  Google Scholar 

  23. Sohal GS, Bockman DE, Ali MM, Tsai NT (1996) DiI labeling and homeobox gene islet-1 expression reveal the contribution of ventral neural tube cells to the formation of the avian trigeminal ganglion. Int J Dev Neurosci 14:419–427

    PubMed  CAS  Google Scholar 

  24. Moury JD, Jacobson AG (1990) The origins of neural crest cells in the axolotl. Dev Biol 141:243–253

    PubMed  CAS  Google Scholar 

  25. Dickinson ME, Selleck MA, McMahon AP, Bronner-Fraser M (1995) Dorsalization of the neural tube by the non-neural ectoderm. Development 121:2099–2106

    PubMed  CAS  Google Scholar 

  26. Mancilla A, Mayor R (1996) Neural crest formation in Xenopus laevis: mechanisms of Xs1ug induction. Dev Biol 177:580–589

    PubMed  CAS  Google Scholar 

  27. Sechrist J, Nieto MA, Zamanian RT, Bronner-Fraser M (1995) Regulative response of the cranial neural tube after neural fold ablation: spatiotemporal nature of neural crest regeneration and up-regulation of Slug. Development 121:4103–4115

    PubMed  CAS  Google Scholar 

  28. Scherson T, Serbedzija G, Fraser S, Bronner-Fraser M (1993) Regulative capacity of the cranial neural tube to form neural crest. Development 118:1049–1062

    PubMed  CAS  Google Scholar 

  29. Hunt P, Ferretti P, Krumlauf R, Thorogood P (1995) Restoration of normal hox code and branchial arch morphogenesis after extensive deletion of hindbrain neural crest. Dev Biol 168:584–597

    PubMed  CAS  Google Scholar 

  30. Dale L, Howes G, Price BM, Smith JC (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115:573–585

    PubMed  CAS  Google Scholar 

  31. Lamb TM et al (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718

    PubMed  CAS  Google Scholar 

  32. Lamb TM, Harland RM (1995) Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 121:3627–3636

    PubMed  CAS  Google Scholar 

  33. Sasai Y et al (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    PubMed  CAS  Google Scholar 

  34. Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    PubMed  CAS  Google Scholar 

  35. Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295

    PubMed  CAS  Google Scholar 

  36. Fainsod A et al (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech Dev 63:39–50

    PubMed  CAS  Google Scholar 

  37. Raven CP Kloos J (1945) Induction by medial and lateral pieces of the archenteron roof with special reference to the determination of the neural crest. Acta Néeri Morph 5:348–362

    Google Scholar 

  38. Wilson PA, Lagna G, Suzuki A, Hemmati-Brivanlou A (1997) Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124:3177–3184

    PubMed  CAS  Google Scholar 

  39. Knecht AK, Good PJ, Dawid IB, Harland RM (1995) Dorsal-ventral patterning and differentiation of noggin-induced neural tissue in the absence of mesoderm. Development 121:1927–1935

    PubMed  CAS  Google Scholar 

  40. Marchant L, Linker C, Ruiz P, Guerrero N, Mayor R (1998) The inductive properties of mesoderm suggest that the neural crest cells are specified by a BMP gradient. Dev Biol 198:319–329

    PubMed  CAS  Google Scholar 

  41. LaBonne C, Bronner-Fraser M (1998) Neural crest induction in Xenopus: evidence for a two-signal model. Development 125:2403–2414

    PubMed  CAS  Google Scholar 

  42. Lee KJ, Jessell TM (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Annu Rev Neurosci 22:261–294

    PubMed  CAS  Google Scholar 

  43. Liem KF Jr, Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969–979

    PubMed  CAS  Google Scholar 

  44. Watanabe Y, Le Douarin NM (1996) A role for BMP-4 in the development of subcutaneous cartilage. Mech Dev 57:69–78

    PubMed  CAS  Google Scholar 

  45. Streit A et al (1998) Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125:507–519

    PubMed  CAS  Google Scholar 

  46. Selleck MA, Garcia-Castro MI, Artinger KB, Bronner-Fraser M (1998) Effects of shh and noggin on neural crest formation demonstrate that BMP is required in the neural tube but not ectoderm. Development 125:4919–4930

    PubMed  CAS  Google Scholar 

  47. Pera E, Stein S, Kessel M (1999) Ectodermal patterning in the avian embryo: epidermis versus neural plate. Development 126:63–73

    PubMed  CAS  Google Scholar 

  48. Liem KF Jr, Tremml G, Jessell TM (1997) A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91:127–138

    PubMed  CAS  Google Scholar 

  49. Anderson DJ (1993) Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor. J Neurobiol 24:185–198

    PubMed  CAS  Google Scholar 

  50. Wilson PA, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376:331–333

    PubMed  CAS  Google Scholar 

  51. Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88

    PubMed  CAS  Google Scholar 

  52. Sieber-Blum M (1998) Growth factor synergism and antagonism in early neural crest development. Biochem Cell Biol 76:1039–1050

    PubMed  CAS  Google Scholar 

  53. Saint-Jeannet JP, He X, Varmus HE, Dawid IB (1997) Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc Nat Acad Sci U S A 94:13713–13718

    CAS  Google Scholar 

  54. Christian JL, McMahon JA, McMahon AP, Moon RT (1991) Xwnt-8, a Xenopus Wnt-1/int-1-related gene responsive to mesoderm-inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development 111:1045–1055

    PubMed  CAS  Google Scholar 

  55. Marchant L, Linker C, Mayor R (1998) Inhibition of mesoderm formation by follistatin. Dev Genes Evol 208:157–160

    PubMed  CAS  Google Scholar 

  56. Bang AG, Papalopulu N, Kintner C, Goulding MD (1997) Expression of Pax-3 is initiated in the early neural plate by posteriorizing signals produced by the organizer and by posterior non-axial mesoderm. Development 124:2075–2085

    PubMed  CAS  Google Scholar 

  57. Bonstein L, Elias S, Frank D (1998) Paraxial-fated mesoderm is required for neural crest induction in Xenopus embryos. Dev Biol 193:156–168

    PubMed  CAS  Google Scholar 

  58. Hume CR, Dodd J (1993) Cwnt-8C: a novel Wnt gene with a potential role in primitive streak formation and hindbrain organization. Development 119:1147–1160

    PubMed  CAS  Google Scholar 

  59. Chang C, Hemmati-Brivanlou A (1998) Neural crest induction by Xwnt7B in Xenopus. Dev Biol 194:129–134

    PubMed  CAS  Google Scholar 

  60. Hollyday M, McMahon JA, McMahon AP (1995) Wnt expression patterns in chick embryo nervous system. Mech Dev 52:9–25

    PubMed  CAS  Google Scholar 

  61. Wolda SL, Moody CJ, Moon RT (1993) Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos. Dev Biol 155:46–57

    PubMed  CAS  Google Scholar 

  62. McGrew LL, Hoppler S, Moon RT (1997) Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev 69:105–114

    PubMed  CAS  Google Scholar 

  63. Roelink H, Nusse R (1991) Expression of two members of the Wnt family during mouse development—restricted temporal and spatial patterns in the developing neural tube. Genes Dev 5:381–388

    PubMed  CAS  Google Scholar 

  64. Parr BA, Shea MJ, Vassileva G, McMahon AP (1993) Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119:247–261

    PubMed  CAS  Google Scholar 

  65. Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S (1997) Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389:966–970

    PubMed  CAS  Google Scholar 

  66. Garcia-Castro MI, Marcelle C, Bronner-Fraser M (2002) Ectodermal Wnt function as a neural crest inducer. Science 297:848–851

    PubMed  CAS  Google Scholar 

  67. Dorsky RI, Moon RT, Raible DW (1998) Control of neural crest cell fate by the Wnt signalling pathway. Nature 396:370–373

    PubMed  CAS  Google Scholar 

  68. Hari L et al (2002) Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol 159:867–880

    PubMed  CAS  Google Scholar 

  69. Lee HY et al (2004) Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303:1020–1023

    PubMed  CAS  Google Scholar 

  70. Mayor R, Guerrero N, Martinez C (1997) Role of FGF and noggin in neural crest induction. Dev Biol 189:1–12

    PubMed  CAS  Google Scholar 

  71. Kengaku M, Okamoto H (1993) Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula. Development 119:1067–1078

    PubMed  CAS  Google Scholar 

  72. Xu RH, Kim J, Taira M, Sredni D, Kung H (1997) Studies on the role of fibroblast growth factor signaling in neurogenesis using conjugated/aged animal caps and dorsal ectoderm-grafted embryos. J Neurosci 17:6892–6898

    PubMed  CAS  Google Scholar 

  73. Tannahill D, Isaacs HV, Close MJ, Peters G, Slack JM (1992) Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction. Development 115:695–702

    PubMed  CAS  Google Scholar 

  74. Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406:74–78

    PubMed  CAS  Google Scholar 

  75. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183

    PubMed  CAS  Google Scholar 

  76. Monsoro-Burq AH, Fletcher RB, Harland RM (2003) Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals. Development 130:3111–3124

    PubMed  CAS  Google Scholar 

  77. Delaune E, Lemaire P, Kodjabachian L (2005) Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132:299–310

    PubMed  CAS  Google Scholar 

  78. Kopan R (2002) Notch: a membrane-bound transcription factor. J Cell Sci 115:1095–1097

    PubMed  CAS  Google Scholar 

  79. Williams R, Lendahl U, Lardelli M (1995) Complementary and combinatorial patterns of Notch gene family expression during early mouse development. Mech Dev 53:357–368

    PubMed  CAS  Google Scholar 

  80. Endo Y, Osumi N, Wakamatsu Y (2002) Bimodal functions of Notch-mediated signaling are involved in neural crest formation during avian ectoderm development. Development 129:863–873

    PubMed  CAS  Google Scholar 

  81. Cornell RA, Eisen JS (2002) Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 129:2639–2648

    PubMed  CAS  Google Scholar 

  82. Glavic A, Silva F, Aybar MJ, Bastidas F, Mayor R (2004) Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos. Development 131:347–359

    PubMed  CAS  Google Scholar 

  83. Barembaum M, Moreno TA, LaBonne C, Sechrist J, Bronner-Fraser M (2000) Noelin-1 is a secreted glycoprotein involved in generation of the neural crest. Nat Cell Biol 2:219–225

    PubMed  CAS  Google Scholar 

  84. Meulemans D, Bronner-Fraser M (2004) Gene-regulatory interactions in neural crest evolution and development. Dev Cell 7:291–299

    PubMed  CAS  Google Scholar 

  85. Betancur P, Bronner-Fraser M, Sauka-Spengler T (2010) Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest. Proc Nat Acad Sci U S A 107:3570–3575

    CAS  Google Scholar 

  86. Nikitina N, Sauka-Spengler T, Bronner-Fraser M (2008) Dissecting early regulatory relationships in the lamprey neural crest gene network. Proc Nat Acad Sci U S A 105:20083–20088

    CAS  Google Scholar 

  87. de Croze N, Maczkowiak F, Monsoro-Burq AH (2011) Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. Proc Nat Acad Sci U S A 108:155–160

    Google Scholar 

  88. Khudyakov J, Bronner-Fraser M (2009) Comprehensive spatiotemporal analysis of early chick neural crest network genes. Dev Dyn 238:716–723

    PubMed  Google Scholar 

  89. Aruga J, Tohmonda T, Homma S, Mikoshiba K (2002) Zic1 promotes the expansion of dorsal neural progenitors in spinal cord by inhibiting neuronal differentiation. Dev Biol 244:329–341

    PubMed  CAS  Google Scholar 

  90. Bang AG, Papalopulu N, Goulding MD, Kintner C (1999) Expression of Pax-3 in the lateral neural plate is dependent on a Wnt-mediated signal from posterior nonaxial mesoderm. Dev Biol 212:366–380

    PubMed  CAS  Google Scholar 

  91. Basch ML, Bronner-Fraser M, Garcia-Castro MI (2006) Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441:218–222

    PubMed  CAS  Google Scholar 

  92. Luo T, Matsuo-Takasaki M, Sargent TD (2001) Distinct roles for Distal-less genes Dlx3 and Dlx5 in regulating ectodermal development in Xenopus. Mol Reprod Dev 60:331–337

    PubMed  CAS  Google Scholar 

  93. Monsoro-Burq AH, Wang E, Harland R (2005) Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev Cell 8:167–178

    PubMed  CAS  Google Scholar 

  94. Sato T, Sasai N, Sasai Y (2005) Neural crest determination by co-activation of Pax3 and Zic1 genes in Xenopus ectoderm. Development 132:2355–2363

    PubMed  CAS  Google Scholar 

  95. Tribulo C, Aybar MJ, Nguyen VH, Mullins MC, Mayor R (2003) Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 130:6441–6452

    PubMed  CAS  Google Scholar 

  96. Lewis JL et al (2004) Reiterated Wnt signaling during zebrafish neural crest development. Development 131:1299–1308

    PubMed  CAS  Google Scholar 

  97. Li B, Kuriyama S, Moreno M, Mayor R (2009) The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction. Development 136:3267–3278

    PubMed  CAS  Google Scholar 

  98. Fuentealba LC et al (2007) Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131:980–993

    PubMed  CAS  Google Scholar 

  99. Liu Y, Helms AW, Johnson JE (2004) Distinct activities of Msx1 and Msx3 in dorsal neural tube development. Development 131:1017–1028

    PubMed  CAS  Google Scholar 

  100. Sauka-Spengler T, Meulemans D, Jones M, Bronner-Fraser M (2007) Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 13:405–420

    PubMed  CAS  Google Scholar 

  101. Sakai D et al (2005) Regulation of Slug transcription in embryonic ectoderm by beta-catenin-Lef/Tcf and BMP-Smad signaling. Dev Growth Differ 47:471–482

    PubMed  CAS  Google Scholar 

  102. Honore SM, Aybar MJ, Mayor R (2003) Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol 260:79–96

    PubMed  CAS  Google Scholar 

  103. Theveneau E, Duband JL, Altabef M (2007) Ets-1 confers cranial features on neural crest delamination. PLoS ONE 2:e1142

    PubMed  Google Scholar 

  104. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    PubMed  CAS  Google Scholar 

  105. Batlle E et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    PubMed  CAS  Google Scholar 

  106. Cano A et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    PubMed  CAS  Google Scholar 

  107. Hatta K, Takagi S, Fujisawa H, Takeichi M (1987) Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 120:215–227

    PubMed  CAS  Google Scholar 

  108. Nakagawa S, Takeichi M (1995) Neural crest cell–cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development 121:1321–1332

    PubMed  CAS  Google Scholar 

  109. Taneyhill LA, Coles EG, Bronner-Fraser M (2007) Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest. Development 134:1481–1490

    PubMed  CAS  Google Scholar 

  110. Cheung M et al (2005) The transcriptional control of trunk neural crest induction, survival, and delamination. Dev Cell 8:179–192

    PubMed  CAS  Google Scholar 

  111. Stemple DL, Anderson DJ (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71:973–985

    PubMed  CAS  Google Scholar 

  112. Doupe AJ, Patterson PH, Landis SC (1985) Small intensely fluorescent cells in culture: role of glucocorticoids and growth factors in their development and interconversions with other neural crest derivatives. J Neurosci 5:2143–2160

    PubMed  CAS  Google Scholar 

  113. Calloni GW, Le Douarin NM, Dupin E (2009) High frequency of cephalic neural crest cells shows coexistence of neurogenic, melanogenic, and osteogenic differentiation capacities. Proc Nat Acad Sci U S A 106:8947–8952

    CAS  Google Scholar 

  114. Shah NM, Marchionni MA, Isaacs I, Stroobant P, Anderson DJ (1994) Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77:349–360

    PubMed  CAS  Google Scholar 

  115. Shah NM, Groves AK, Anderson DJ (1996) Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 85:331–343

    PubMed  CAS  Google Scholar 

  116. Shah NM, Anderson DJ (1997) Integration of multiple instructive cues by neural crest stem cells reveals cell-intrinsic biases in relative growth factor responsiveness. Proc Nat Acad Sci U S A 94:11369–11374

    CAS  Google Scholar 

  117. Morrison SJ et al (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510

    PubMed  CAS  Google Scholar 

  118. White PM et al (2001) Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29:57–71

    PubMed  CAS  Google Scholar 

  119. Bixby S, Kruger GM, Mosher JT, Joseph NM, Morrison SJ (2002) Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35:643–656

    PubMed  CAS  Google Scholar 

  120. Kruger GM et al (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35:657–669

    PubMed  CAS  Google Scholar 

  121. Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ (2003) Hirschsprung disease is linked to defects in neural crest stem cell function. Science 301:972–976

    PubMed  CAS  Google Scholar 

  122. Lee G et al (2007) Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 25:1468–1475

    PubMed  CAS  Google Scholar 

  123. Lee G, Chambers SM, Tomishima MJ, Studer L (2010) Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 5:688–701

    PubMed  CAS  Google Scholar 

  124. Curchoe CL et al (2010) Early acquisition of neural crest competence during hESCs neuralization. PLoS ONE 5:e13890

    PubMed  Google Scholar 

  125. Cimadamore F et al (2011) Human ESC-derived neural crest model reveals a key role for SOX2 in sensory neurogenesis. Cell Stem Cell 8:538–551

    PubMed  CAS  Google Scholar 

  126. Ledouarin NM (1986) Cell-line segregation during peripheral nervous-system ontogeny. Science 231:1515–1522

    CAS  Google Scholar 

  127. Bronner-Fraser M, Fraser S (1989) Developmental potential of avian trunk neural crest cells in situ. Neuron 3:755–766

    PubMed  CAS  Google Scholar 

  128. Frank E, Sanes JR (1991) Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111:895–908

    PubMed  CAS  Google Scholar 

  129. Kim J, Lo L, Dormand E, Anderson DJ (2003) SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38:17–31

    PubMed  CAS  Google Scholar 

  130. Southard-Smith EM, Kos L, Pavan WJ (1998) Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Nat Genet 18:60–64

    PubMed  CAS  Google Scholar 

  131. Serbedzija GN, Bronner-Fraser M, Fraser SE (1989) A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 106:809–816

    PubMed  CAS  Google Scholar 

  132. Weston JA, Butler SL (1966) Temporal factors affecting localization of neural crest cells in the chicken embryo. Dev Biol 14:246–266

    PubMed  CAS  Google Scholar 

  133. Baker CV, Bronner-Fraser M, Le Douarin NM, Teillet MA (1997) Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo. Development 124:3077–3087

    PubMed  CAS  Google Scholar 

  134. Richardson MK, Sieber-Blum M (1993) Pluripotent neural crest cells in the developing skin of the quail embryo. Dev Biol 157:348–358

    PubMed  CAS  Google Scholar 

  135. Artinger KB, Bronner-Fraser M (1992) Partial restriction in the developmental potential of late emigrating avian neural crest cells. Dev Biol 149:149–157

    PubMed  CAS  Google Scholar 

  136. Perez SE, Rebelo S, Anderson DJ (1999) Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126:1715–1728

    PubMed  CAS  Google Scholar 

  137. Trainor PA, Ariza-McNaughton L, Krumlauf R (2002) Role of the isthmus and FGFs in resolving the paradox of neural crest plasticity and prepatterning. Science 295:1288–1291

    PubMed  CAS  Google Scholar 

  138. Pasqualetti M, Ori M, Nardi I, Rijli FM (2000) Ectopic Hoxa2 induction after neural crest migration results in homeosis of jaw elements in Xenopus. Development 127:5367–5378

    PubMed  CAS  Google Scholar 

  139. Grammatopoulos GA, Bell E, Toole L, Lumsden A, Tucker AS (2000) Homeotic transformation of branchial arch identity after Hoxa2 overexpression. Development 127:5355–5365

    PubMed  CAS  Google Scholar 

  140. Kruger GM et al (2003) Temporally distinct requirements for endothelin receptor B in the generation and migration of gut neural crest stem cells. Neuron 40:917–929

    PubMed  CAS  Google Scholar 

  141. Carr VM, Simpson SB Jr (1978) Proliferative and degenerative events in the early development of chick dorsal root ganglia. II. Responses to altered peripheral fields. J Comp Neurol 182:741–755

    PubMed  CAS  Google Scholar 

  142. Marchionni MA et al (1993) Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362:312–318

    PubMed  CAS  Google Scholar 

  143. Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390

    PubMed  CAS  Google Scholar 

  144. Oakley RA, Lasky CJ, Erickson CA, Tosney KW (1994) Glycoconjugates mark a transient barrier to neural crest migration in the chicken embryo. Development 120:103–114

    PubMed  CAS  Google Scholar 

  145. Perris R (1997) The extracellular matrix in neural crest-cell migration. Trends Neurosci 20:23–31

    PubMed  CAS  Google Scholar 

  146. Anderson DJ (1999) Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr Opin Neurobiol 9:517–524

    PubMed  CAS  Google Scholar 

  147. Trentin A, Glavieux-Pardanaud C, Le Douarin NM, Dupin E (2004) Self-renewal capacity is a widespread property of various types of neural crest precursor cells. Proc Nat Acad Sci U S A 101:4495–4500

    CAS  Google Scholar 

  148. Mujtaba T, Mayer-Proschel M, Rao MS (1998) A common neural progenitor for the CNS and PNS. Dev Biol 200:1–15

    PubMed  CAS  Google Scholar 

  149. Bitgood MJ, McMahon AP (1995) Hedgehog and Bmp genes are coexpressed at many diverse sites of cell–cell interaction in the mouse embryo. Dev Biol 172:126–138

    PubMed  CAS  Google Scholar 

  150. Lyons KM, Hogan BL, Robertson EJ (1995) Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev 50:71–83

    PubMed  CAS  Google Scholar 

  151. LaBonne C, Bronner-Fraser M (1998) Induction and patterning of the neural crest, a stem cell-like precursor population. J Neurobiol 36:175–189

    PubMed  CAS  Google Scholar 

  152. Groves AK, Bronner-Fraser M (1999) Neural crest diversification. Curr Top Dev Biol 43:221–258

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Clare Baker and Anne Knecht for invaluable comments on the manuscript and Carole LaBonne for helpful discussions. M. S. C. was supported by the Pew Fellows Program in Biomedical Sciences. T. A. M. was a Fellow of the ARCS Foundation. H. D. H. was supported by the McCallum Fund at the California Institute of Technology, Medical Scientist Training Program Grant GM08042, and the Aesculapians Fund of the David Geffen School of Medicine at UCLA. This work was supported by U.S. Public Health Service Grants NS36585, NS42287 and HD037105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Bronner-Fraser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simões-Costa, M.S., Hemmati, H.D., Moreno, T.A., Bronner-Fraser, M. (2012). Neural Crest Formation and Diversification. In: Rao, M., Carpenter, M., Vemuri, M. (eds) Neural Development and Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3801-4_5

Download citation

Publish with us

Policies and ethics