Skip to main content
Log in

Neuronal classes in the corticoid complex of the telencephalon of the strawberry finch, Estrilda amandava

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The present study, based on neurohistological techniques (Nissl-staining, Golgi-impregnation), focuses on the cytoarchitecture of the corticoid complex in the strawberry finch, Estrilda amandava. This complex in birds occupies the dorsolateral surface of the telencephalic pallium and remains subdivided into an intermediate corticoid area (CI) and a dorsolateral corticoid area (CDL). The CDL in the strawberry finch is a thin superficial part of the caudal pallium adjoining the medially situated hippocampal formation, whereas the CI is demarcated between the CDL and the parahippocampal area of telencephalon. Neurons of the corticoid complex are classified into three main cell groups: predominant projection neurons, local circuit neurons and stellate neurons. The spinous projection neurons send out distant projecting axons that typically extend several varicose collaterals. Most of these collaterals lie parallel to the ventricle. These neurons are subclassified into pyramidal neurons (localized only in the CI) and multipolar neurons (present in both the CI and CDL). The CDL also possesses small and medium-sized horizontal cells, which are bitufted or multipolar with smooth, moderately branching dendrites. The aspinous local circuit neurons extend short axons that ramify locally. Stellate neurons have sparse spinous dendrites and locally arborizing axons. The corticoid complex of birds corresponds to the lateral cerebral cortex of lizards and to the entorhinal cortex of mammals on the basis of neuronal morphology and bidirectional connections between adjacent areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alonso A, Klink R (1993) Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. J Neurophysiol 70:128–143

    PubMed  CAS  Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of the vertebrates including man, vol 2. Macmillan, London

    Google Scholar 

  • Atoji Y, Wild JM (2004) Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract-tracing and kainic acid lesions. J Comp Neurol 475:426–461

    Article  PubMed  CAS  Google Scholar 

  • Atoji Y, Wild JM (2005) Afferent and efferent connections of the dorsolateral corticoid area and a comparison with connections of the temporo-parieto-occipital area in the pigeon (Columba livia). J Comp Neurol 485:165–182

    Article  PubMed  Google Scholar 

  • Atoji Y, Wild JM, Yamamoto Y, Suzuki Y (2002) Intratelencephalic connections of the hippocampus in pigeons (Columba livia). J Comp Neurol 447:177–199

    Article  PubMed  Google Scholar 

  • Berbel PJ, Martinez-Guijarro FJ, Lopez-Garcia C (1987) Intrinsic organization of the medial cerebral cortex of the lizard Lacerta pityusensis. A Golgi study. J Morphol 194:276–286

    Article  Google Scholar 

  • Baylé JD, Ramade F, Oliver J (1974) Stereotaxic topography of the brain of the quail (Coturnix coturnix japonica). J Physol (Paris) 68:219–241

    Google Scholar 

  • Bruce LL, Butler AB (1984) Telencephalic connections in lizards. I. Projections to cortex. J Comp Neurol 229:585–601

    Article  PubMed  CAS  Google Scholar 

  • Canto CB, Ganter P, Moser EI, Moser MB, Witter MP (2006) Neuron diversity in the medial entorhinal cortex of the rat. Soc Neurosci Abst 32:68.4

    Google Scholar 

  • Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural Plast 2008:381243

    Article  PubMed  Google Scholar 

  • Casini G, Bingman VP, Bagnoli P (1986) Connections of the pigeon dorsomedial forebrain studied with WGA-HRP and H3-proline. J Comp Neurol 245:454–470

    Article  PubMed  CAS  Google Scholar 

  • Colombo M, Broadbent N (2000) Is the avian hippocampus a functional homologue of the mammalian hippocampus. Neurosci Biobehav Rev 24:465–484

    Article  PubMed  CAS  Google Scholar 

  • Colombo M, Broadbent NJ, Taylor CSR, Frost N (2001) The role of the avian hippocampus in orientation in space and time. Brain Res 919:292–301

    Article  PubMed  CAS  Google Scholar 

  • Cozzi B, Massa R, Panzica GC (1997) The NADPH-diaphorase-containing system in the brain of the budgerigar (Melopsittacus undulatus). Cell Tissue Res 287:101–112

    Article  PubMed  CAS  Google Scholar 

  • Craigie EH (1935) The hippocampal and parahippocampal cortex of the emu (Dromiceius). J Comp Neurol 61:563–591

    Article  Google Scholar 

  • Delius JD, Jäger R, Friesel M (1984) Lateral telencephalic lesions affect visual discriminations in pigeon. Behav Barin Res 11:249–258

    Article  CAS  Google Scholar 

  • Dubbeldam JL, Den Boer-Visser AM, Bout RG (1997) Organization and efferent connections of the archistriatum of the mallard, Anas platyrhynchos L.: an anterograde and retrograde tracing study. J Comp Neurol 388:632–657

    Article  PubMed  CAS  Google Scholar 

  • Erichsen JT, Bingman VP, Krebs JR (1991) The distribution of neuropeptides in the dorsomedial forebrain of the pigeon (Columba livia): a basis for regional subdivisions. J Comp Neurol 314:478–492

    Article  PubMed  CAS  Google Scholar 

  • Fortune ES, Margoliash D (1992) Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taeniopygia guttata). J Comp Neurol 325:388–404

    Article  PubMed  CAS  Google Scholar 

  • Garcia Verdugo JM, Molla Palleja R, Lopez-Garcia C (1984) Ultrastructure of neuronal cell bodies in the lateral cortex of Lacerta galloti. J Hirnforsch 25:197–203

    PubMed  CAS  Google Scholar 

  • Gloveli T, Dugladze T, Schmitz D, Heinemann U (2001) Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrus. Eur J Neurosci 13:413–420

    Article  PubMed  CAS  Google Scholar 

  • Gloveli T, Schmitz D, Empson RM, Dugladze T, Heinemann U (1997) Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat. Neuroscience 77:629–648

    Article  PubMed  CAS  Google Scholar 

  • Guirado S, Davila JC, De la Calle A, Marin-Giron F (1987) A Golgi study of the dorsoal cortex in the lizard Psammodromus algirus. J Morphol 194:265–274

    Article  Google Scholar 

  • Hamam BN, Amaral DG, Alonso AA (2002) Morphological and electrophysiological characteristics of layer V neurons of the rat lateral entorhinal cortex. J Comp Neurol 451:45–61

    Article  PubMed  Google Scholar 

  • Hamam BN, Kennedy TE, Alonso A, Amaral DG (2000) Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. J Comp Neurol 418:457–472

    Article  PubMed  CAS  Google Scholar 

  • Hartmann B, Güntürkün O (1998) Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeon: possible behavioral equivalencies to the mammalian prefrontal system. Behav Brain Res 96:125–133

    Article  PubMed  CAS  Google Scholar 

  • Hoogland PV, Vermeulen-Vanderzee E (1995) Efferent connections of the lateral cortex of the lizard Gekko gecko: evidence for separate origins of medial and lateral pathways from the lateral cortex to the hypothalamus. J Comp Neurol 352:469–480

    Article  PubMed  CAS  Google Scholar 

  • Huber GC, Crosby EC (1929) The nuclei and fibre paths of the diencephalon, with consideration of telencephalic and certain mesencephalic centers and connections. J Comp Neurol 48:1–225

    Article  Google Scholar 

  • Jäger R (1990) Visuomotor feeding perturbation after lateral telencephalic lesions in pigeons. Behav Brain Res 40:73–80

    Article  PubMed  Google Scholar 

  • Jäger R (1993) Lateral forebrain lesions affect pecking accuracy in the pigeon. Behav Process 28:181–188

    Article  Google Scholar 

  • Karten H, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon (Columba livia). Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Kerr KM, Agster KL, Furtak SC, Burwell RD (2007) Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus 17:697–708

    Article  PubMed  Google Scholar 

  • Klink R, Alonso A (1993) Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J Neurophysiol 70:144–157

    PubMed  CAS  Google Scholar 

  • Klink R, Alonso A (1997a) Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J Neurophysiol 77:1813–1828

    PubMed  CAS  Google Scholar 

  • Klink R, Alonso A (1997b) Morphological characteristics of layer II projection neurons in the rat medial entorhinal cortex. Hippocampus 7:571–583

    Article  PubMed  CAS  Google Scholar 

  • Krebs JR, Erichsen JT, Bingman VP (1991) The distribution of neurotransmitter-related enzymes in the dorsomedial telencephalon of the pigeon (Columba livia). J Comp Neurol 314:467–477

    Article  PubMed  CAS  Google Scholar 

  • Kröner S, Gottmann K, Hatt H, Güntürkün O (2002) Electrophysiological and morphological properties of cell types in the chick neostriatum caudolaterale. Neuroscience 110:459–473

    Article  PubMed  Google Scholar 

  • Kuenzel WJ, Masson M (1988) A stereotaxic atlas of the brain of the chick (Gallus domesticus). Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Kumar SS, Buckmaster PS (2006) Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy. J Neurosci 26:4613–4623

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Miyasato LE, Clayton NS (1998) Neurobiological basis of spatial learning in the natural environment: neurogenesis and growth in the avian and mammalian hippocampus. Neuroreport 9:R15–R27

    Article  PubMed  CAS  Google Scholar 

  • Lingenhohl K, Finch DM (1991) Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains. Exp Brain Res 84:57–74

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. J Psychol Neurol 45:381–438

    Google Scholar 

  • Luis de la Iglesia JA, Lopez-Garcia C (1997) A Golgi study of the principal projection neurons of the medial cortex of the lizard Podarcis hispanica. J Comp Neurol 385:528–564

    Article  PubMed  CAS  Google Scholar 

  • Luis de la Iglasia JA, Martinez-Guijarro FJ, Lopez-Garcia C (1994) Neurons of the medial cortex outer plexiform layer of the lizard Podarcis hispanica: Golgi and immunocytochemical study. J Comp Neurol 341:184–203

    Article  Google Scholar 

  • Martinez-Garcia F, Amiguet M, Olucha F, Lopez-Garcia C (1986) Connections of the lateral cortex in the lizard Podarcis hispanica. Neurosci Lett 63:39–44

    Article  PubMed  CAS  Google Scholar 

  • Matochik JA, Reems CN, Wenzel BM (1991) A brain atlas of the North Flumer (Fulmarus glacialis) in stereotaxic coordinates. Brain Bahav Evol 37:215–244

    Article  CAS  Google Scholar 

  • Maurya RC, Srivastava UC (2006) Morphological diversity of the medial cortex neurons in the common Indian wall lizard, Hemidactylus flaviviridis. Natl Acad Sci Lett 29:375–383

    Google Scholar 

  • Mollá R, Rodriguez J, Calvet S, Garcia-Verdugo JM (1986) Neuronal types of the cerebral cortex of the adult chicken Gallus gallus. A Golgi study. J Hirnforsch 27:381–390

    Google Scholar 

  • Montagnese CM, Krebs JR, Meyer G (1996) The dorsomedial and dorsolateral forebrain of the zebra finch, Taeniopygia guttata: a Golgi study. Cell Tissue Res 283:263–282

    Article  PubMed  CAS  Google Scholar 

  • Montagnese CM, Geneser FA, Krebs JR (1993a) Histochemical distribution of zinc in the brain of zebra finch (Taeniopygia guttata). Anat Embryol 188:173–187

    Article  PubMed  CAS  Google Scholar 

  • Montagnese CM, Krebs JR, Székely AD, Csillag A (1993b) A subpopulation of large calbindin-like immunopositive neurons is present in the hippocampal formation in food-storing but not in non-storing species of bird. Brain Res 614:291–300

    Article  PubMed  CAS  Google Scholar 

  • Nixdorf CM, Davis SS, DeVoogd TJ (1989) Morphology of Golgi-impregnated neurones in hyperstriatum ventrale, pars caudalis in adult male and female canaries. J Comp Neurol 284:337–349

    Article  PubMed  CAS  Google Scholar 

  • Olucha F, Martinez-Garcia F, Poch L, Schwerdtfeger WK, Lopez-Garcia C (1988) Projections from the medial cortex in the brain of lizards: correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining. J Comp Neurol 276:469–480

    Article  PubMed  CAS  Google Scholar 

  • Rosene DL, Van Hoesen GW (1987) The hippocampal formation of the primate brain. A review of some comparative aspects of cytoarchitecture and connections. In: Jones EG, Peters A (eds) Cerebral cortex. Further aspects of cortical function, including hippocampus, vol 6. Plenum, London, pp 345–456

    Google Scholar 

  • Rose M (1914) Über die cytoarchitektonische Gliederung des Vorderhirns der Vögel. J Psychol Neurol 21:278–352

    Google Scholar 

  • Schwartz SP, Coleman PD (1981) Neurons of origin of the perforant path. Exp Neurol 74:305–312

    Article  PubMed  CAS  Google Scholar 

  • Sherry DF, Jacobs LF, Daulin SJC (1992) Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci 15:298–303

    Article  PubMed  CAS  Google Scholar 

  • Shiflett MW, Tomaszycki ML, Rankin AZ, DeVoogd TJ (2004) Long-term memory for spatial locations in a food-storing bird (Poecile atricapilla) requires activation of NMDA receptors in the hippocampal formation during learning. Behav Neurosci 118:121–130

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Karten HJ (1990) Immunohistochemical analysis of the visual wulst of the pigeon (Columba livia). J Comp Neurol 300:346–369

    Article  PubMed  CAS  Google Scholar 

  • Srivastava UC, Chand P, Maurya RC (2007a) Cytoarchitectonic organization and morphology of the cells of hippocampal complex in strawberry finch, Estrilda amandava. Cell Mol Biol 53:103–120

    PubMed  CAS  Google Scholar 

  • Srivastava UC, Maurya RC, Shishodiya U (2007b) Cyto-architecture and morphology of the different neuronal types of cerebral cortex of the Indian lizard, Mabouia carinata (Schneider). Proc Natl Acad Sci India 77(B):331–347

    Google Scholar 

  • Stokes TM, Leonard CM, Nottebohm F (1974) The telencephalon, diencephalon, and mesencephalon of the canary, Serinus canaria, in stereotaxic coordinates. J Comp Neurol 156:337–374

    Article  Google Scholar 

  • Székely AD, Krebs JR (1996) Efferent connectivity of the hippocampal formation of the zebra finch (Taeniopygia guttata). An anterograde pathway tracing study using Phaseolus vulgaris leucoagglutinin. J Comp Neurol 368:198–214

    Article  PubMed  Google Scholar 

  • Tahvildari B, Alonso A (2005) Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons. J Comp Neurol 491:123–140

    Article  PubMed  Google Scholar 

  • Tömböl T (1995) Golgi structure of telencephalon of the chicken. Abaevo, Budapest

    Google Scholar 

  • Tömböl T, Maglόczky Z (1990) Cytoarchitecture of chicken wulst: a Golgi study in cell types and their maturation after hatching. Acta Morphol Hung 38:35–53

    PubMed  Google Scholar 

  • Tömböl T, Csillag A, Stewart MG (1988a) Cell types of the hyperstriatum ventrale of the domestic chicken (Gallus domesticus): a Golgi study. J Hirnforsch 29:319–334

    PubMed  Google Scholar 

  • Tömböl T, Csillag A, Stewart MG (1988b) Cell types of the paleostriatal complex of the domestic chicken (Gallus domesticus): a Golgi study. J Hirnforsch 29:493–507

    PubMed  Google Scholar 

  • Tömböl T, Davies DC, Németh A, Sebestény T, Alpár A (2000a) A comparative Golgi study of chicken (Gallus domesticus) and homing pigeon (Columba livia) hippocampus. Anat Embryol 201:85–101

    Article  PubMed  Google Scholar 

  • Tömböl T, Davies DC, Németh A, Alpár A, Sebestény T (2000b) A Golgi and a combined Golgi/GABA immunogold study of local circuit neurons in the homing pigeon hippocampus. Anat Embryol 201:181–196

    Article  PubMed  Google Scholar 

  • Ulinski PS, Rainey WT (1980) Intrinsic organization of snake lateral cortex. J Morphol 165:85–116

    Article  Google Scholar 

  • Wouterlood FG (1981) The structure of the mediodorsal cerebral cortex in the lizard Agama agama: a Golgi study. J Comp Neurol 196:443–458

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood FG, Pothuizen H (2000) Sparse colocalization of somatostatin- and GABA-immunoreactivity in the entorhinal cortex of the rat. Hippocampus 10:77–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Head of the Department of Zoology, University of Allahabad, Allahabad for providing essential facilities for the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. C. Srivastava.

Additional information

This work is supported by a D. Phil. Fellowship under the UGC scheme awarded to P. Chand and by a CSIR Fellowship (F. no. 9/1 (270)/2004 — EMR-І) awarded to R.C. Maurya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, U.C., Chand, P. & Maurya, R.C. Neuronal classes in the corticoid complex of the telencephalon of the strawberry finch, Estrilda amandava . Cell Tissue Res 336, 393–409 (2009). https://doi.org/10.1007/s00441-009-0790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0790-1

Keywords

Navigation