Skip to main content

Advertisement

Log in

Endothelial transcytosis in health and disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The visionaries predicted the existence of transcytosis in endothelial cells; the cell biologists deciphered its mechanisms and (in part) the molecules involved in the process; the cell pathologists unravelled the presence of defective transcytosis in some diseases. The optimistic perspective is that transcytosis, in general, and receptor-mediated transcytosis, in particular, will be greatly exploited in order to target drugs and genes to exclusive sites in and on endothelial cells (EC) or underlying cells. The current recognition that plasmalemmal vesicles (caveolae) are the vehicles involved in EC transcytosis has moved through various phases from intial considerations of caveolae as unmovable sessile non-functional plasmalemma invaginations to the present identification of a multitude of molecules and a crowd of functions associated with these ubiquitous structures of endothelial and epithelial cells. Further understanding of the molecular machinery that precisely guides caveolae through the cells so as to reach the target membrane (fission, docking, and fusion), to avoid lysosomes, or on the contrary, to reach the lysosomes, and discharge the cargo molecules will assist in the design of pathways that, by manipulating the physiological route of caveolae, will carry molecules of choice (drugs, genes) at controlled concentrations to precise destinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adenot M, Merida P, Lahana R (2007) Applications of a blood-brain barrier technology platform to predict CNS penetration of various chemotherapeutic agents. 2. Cationic peptide vectors for brain delivery. Chemotherapy 53:73–76

    Article  PubMed  CAS  Google Scholar 

  • Anderson RGW, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411

    Article  PubMed  CAS  Google Scholar 

  • Antohe F, Poznansky MJ, Simionescu M (1999) Low density lipoprotein binding induces asymmetric redistribution of the low density lipoprotein receptors in endothelial cells. Eur J Cell Biol 78:407–415

    PubMed  CAS  Google Scholar 

  • Bendayan M, Rasio EA (1996) Transport of insulin and albumin by the microvascular endothelium of the rete mirabile. J Cell Sci 109:1857–1864

    PubMed  CAS  Google Scholar 

  • Boado RJ (2007) Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res 24:1772–1787

    Article  PubMed  CAS  Google Scholar 

  • Bouzin C, Feron O (2007) Targeting tumour stroma and exploiting mature tumour vasculature to improve anti-cancer drug delivery. Drug Resist Update 10:109–120

    Article  CAS  Google Scholar 

  • Cavelier C, Roher L, Eckardstein A von (2006) ATP-binding cassette transporter A1 modulates apolipoprotein A-1 transcytosis through aortic endothelial cells. Circ Res 99:1060–1066

    Article  PubMed  CAS  Google Scholar 

  • Deeken JF, Löscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    Article  PubMed  CAS  Google Scholar 

  • Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R (1997) A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol 138:877–889

    Article  PubMed  CAS  Google Scholar 

  • Demeule M, Régina A, Ché C, Poirier J, Nguyen T, Gabathuler R, Castaigne J-P, Béliveau R (2008) Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther 324:1064–1072

    Article  PubMed  CAS  Google Scholar 

  • Dietrich MO, Muller A, Bolos M, Carro E, Perry ML, Portela LV, Souza DO, Torres-Aleman I (2007) Western style diet impairs entrance of blood-borne insulin-like growth factor-1 into the brain. Neuromolecular Med 9:324–330

    Article  PubMed  CAS  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP (2008) Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol 295:C242–C248

    Article  PubMed  CAS  Google Scholar 

  • Gafencu A, Stanescu M, Toderici AM, Heltianu C, Simionescu M (1998) Protein and fatty acid composition of caveolae from apical plasmalemma of aortic endothelial cells. Cell Tissue Res 293:101–110

    Article  PubMed  CAS  Google Scholar 

  • Ghinea N, Fixman A, Alexandru D, Popov D, Hasu M, Ghitescu L, Eskenasy M, Simionescu M, Simionescu N (1988) Identification of albumin-binding proteins in capillary endothelial cells. J Cell Biol 107:231–239

    Article  PubMed  CAS  Google Scholar 

  • Ghitescu L, Fixman A, Simionescu M, Simionescu N (1986) Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 102:1304–1311

    Article  PubMed  CAS  Google Scholar 

  • Gratton J-P, Bernatchez P, Sessa WC (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94:1408–1417

    Article  PubMed  CAS  Google Scholar 

  • Heltianu C, Simionescu M, Simionescu N (1982) Histamine receptors of the microvascular endothelium revealed in situ with a histamine-ferritin conjugate: characteristic high affinity binding sites in venules. J Cell Biol 93:357–364

    Article  PubMed  CAS  Google Scholar 

  • Hu G, Place AT, Minshall RD (2008) Regulation of endothelial permeability by Src kinase signaling: vascular leakage versus transcellular transport of drugs and macromolecules. Chem Biol Interact 171:177–189

    Article  PubMed  CAS  Google Scholar 

  • Huang R-Q, Qu Y-H, Ke W-L, Zhu J-H, Pei Y-Y, Jiang C (2007) Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 21:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Hussain NK, Jenna S, Glogauer M, Quinn CC, Wasiak S, Guipponi M, Antonarakis SE, Kay BK, Stossel TP, Lamarche-Vane N, McPherson PS (2001) Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol 3:927–932

    Article  PubMed  CAS  Google Scholar 

  • Ikuta K, Mori T, Yamamoto T, Niidome T, Shimokawa H, Katayama Y (2008) Development of polymeric drug delivery system for recognizing vascular endothelial dysfunction. Bioorg Med Chem 16:2811–2818

    Article  PubMed  CAS  Google Scholar 

  • Ji B, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H, Suhara T (2006) Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci 78:851–855

    Article  PubMed  CAS  Google Scholar 

  • Jones AR, Shusta EV (2007) Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 24:1759–1771

    Article  PubMed  CAS  Google Scholar 

  • King GE, Johnson SM (1985) Receptor-mediated transport of insulin across endothelial cells. Science 227:1583–1588

    Article  PubMed  CAS  Google Scholar 

  • Kratzer I, Wernig K, Panzenboeck U, Bernhart E, Reicher H, Wronski R, Windisch M, Hammer A, Malle E, Zimmer A, Sattler W (2007) Apolipoprotein A-I coating of protamine-oligonucleotide nanoparticles increases particle uptake and transcytosis in an in vitro model of the blood-brain barrier. J Control Release 117:301–311

    Article  PubMed  CAS  Google Scholar 

  • Kuzmenko ES, Djafarzadeh S, Cakar ZP, Fiedler K (2004) LDL transcytosis by protein membrane diffusion. Int J Biochem Cell Biol 36:519–534

    Article  PubMed  CAS  Google Scholar 

  • Lisanti MP, Scherer PE, Tang ZL, Sargiacomo M (1994a) Caveolae, caveolin and caveolin-rich membrane domains: a sygnaling hypothesis. Trends Cell Biol 4:231–235

    Article  PubMed  CAS  Google Scholar 

  • Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M (1994b) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 126:111–126

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Anderson RGW (1995) Compartmentalized production of ceramide at the cell surface. J Biol Chem 270:27179–27185

    Article  PubMed  CAS  Google Scholar 

  • Maniatis NA, Brovkovych V, Allen SE, John TA, Shajahan AN, Tiruppathi C, Vogel SM, Skidgel RA, Malik AB, Minshall RD (2006) Novel mechanism of endothelial nitric oxide synthase activation mediated by caveolae internalization in endothelial cells. Circ Res 99:870–877

    Article  PubMed  CAS  Google Scholar 

  • McIntosh DP, Schnitzer JE (1999) Caveolae require intact VAMP for targeted transport in vascular endothelium. Am J Physiol Heart Circ Physiol 277:H2222–H2232

    CAS  Google Scholar 

  • Mehta D, Malik AD (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    Article  PubMed  CAS  Google Scholar 

  • Milici AJ, Watrous NE, Stukenbrok H, Palade GE (1987) Transcytosis of albumin in capillary endothelium. J Cell Biol 105:2603–2612

    Article  PubMed  CAS  Google Scholar 

  • Minshall RD, Malik AB (2006) Transport across the endothelium: regulation of endothelial permeability. Handb Exp Pharmacol 176:107–144

    Article  PubMed  Google Scholar 

  • Mordelet E, Davies HA, Hillyer P, Romero IA, Male D (2007) Chemokine transport across human vascular endothelial cells. Endothelium 14:7–15

    Article  PubMed  CAS  Google Scholar 

  • Moroo I, Ujiie M, Walker BL, Tiong JW, Vitalis TZ, Karkan D, Gabathuler R, Moise AR, Jefferies WA (2003) Identification of a novel route of iron transcytosis across the mammalian blood-brain barrier. Microcirculation 10:457–462

    Article  PubMed  CAS  Google Scholar 

  • Murata M, Peranen J, Schreiner R, Wieland FT, Kurzchalia T, Simons K (1995) VIP21-caveolin is a cholesterol binding protein. Proc Natl Acad Sci USA 92:10339–10343

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC (2007) Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem 282:16631–16643

    Article  PubMed  CAS  Google Scholar 

  • Nistor A, Simionescu M (1986) Uptake of low density lipoproteins by the hamster-lung interactions with capillary endothelium. Am Rev Resp Dis 134:1266–1272

    PubMed  CAS  Google Scholar 

  • Oh P, McIntosh DP, Schnitzer JE (1998) Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 141:101–114

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Borgström P, Witkiewicz H, Li Y, Borgström BJ, Chrastina A, Iwata K, Zinn KR, Baldwin R, Testa JE, Schnitzer JE (2007) Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 25:327–337

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1960) Transport in quanta across the endothelium of blood capillaries. Anat Rec 136:254

    Google Scholar 

  • Pardridge WM (2004) Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin Biol Ther 4:1103–1113

    Article  PubMed  CAS  Google Scholar 

  • Pardridge WM (2006) Molecular Trojan horses for blood-brain barrier drug delivery. Discovery Med 6:139–143

    Google Scholar 

  • Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histochem Cytochem 42:155–166

    PubMed  CAS  Google Scholar 

  • Popov D, Simionescu M (2006) Cellular mechanisms and signalling pathways activated by high glucose and AGE-albumin in the aortic endothelium. Arch Physiol Biochem 112:265–273

    Article  PubMed  CAS  Google Scholar 

  • Popov D, Hasu M, Costache G, Stern D, Simionescu M (1997) Capillary and aortic endothelia interact in situ with nonenzymatically glycated albumin and develop specific alterations in experimental diabetes. Acta Diabetol 34:285–293

    Article  PubMed  CAS  Google Scholar 

  • Predescu D, Simionescu M, Simionescu N, Palade GE (1988) Binding and transcytosis of glycoalbumin by the microvascular endothelium of the murine myocardium: evidence that glycoalbumin behaves as a bifunctional ligand. J Cell Biol 107:1729–1738

    Article  PubMed  CAS  Google Scholar 

  • Roberts RL, Sandra A (1994) Transport of transferrin across the blood-thymus barrier in young rats. Tissue Cell 26:757–766

    Article  PubMed  CAS  Google Scholar 

  • Rothberg KG, Ying YS, Kamen BA, Anderson RG (1990) Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol 111:2931–2938

    Article  PubMed  CAS  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  CAS  Google Scholar 

  • Schilling K, Opitz N, Wiesenthal A, Oess S, Tikkanen R, Müller-Esterl W, Icking A (2006) Translocation of endothelial nitric-oxide synthase involves a ternary complex with caveolin-1 and NOSTRIN. Mol Biol Cell 17:3870–3880

    Article  PubMed  CAS  Google Scholar 

  • Schmidt AM, Mora R, Cao R, Yan SD, Brett J, Ramakrishnan R, Tsang TC, Simionescu M, Stern D (1994) The endothelial cell binding site for advanced glycation endproducts consists of a complex: an integral membrane protein and a lactoferrin-like polypeptide. J Biol Chem 269:9882–9888

    PubMed  CAS  Google Scholar 

  • Schnitzer JE, Carley WW, Palade GE (1988) Albumin interacts specifically with a 60-kDa microvascular endothelial glycoprotein. Proc Natl Acad Sci USA 85:6773–6777

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE, Oh P, Pinney E, Allard J (1994) Filipin-sensitive caveolae mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 127:1217–1232

    Article  PubMed  CAS  Google Scholar 

  • Schnitzer JE, Liu J, Oh P (1995) Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 270:14399–14404

    Article  PubMed  CAS  Google Scholar 

  • Schubert W, Frank PG, Razani B, Park DS, Chow C-W, Lisanti MP (2001) Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J Biol Chem 276:48619–48622

    Article  PubMed  CAS  Google Scholar 

  • Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE, Chow CW, Lisanti MP (2002) Microvascular hyperpermeability in caveolin-1 (−/−) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098

    Article  PubMed  CAS  Google Scholar 

  • Shajahan AN, Timblin BK, Sandoval R, Tiruppathi C, Malik AB, Minshall RD (2004) Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem 279:20392–20400

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Wang W, Rasmussen JC, Joshi A, Houston JP, Adams KE, Cameron A, Ke S, Kwon S, Mawad ME, Sevick-Muraca EM (2007) Quantitative imaging of lymph function. Am J Physiol Heart Circ Physiol 292:H3109–H3118

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M (1988) Receptor-mediated transcytosis of plasma molecules by vascular endothelium. In: Simionescu N, Simionescu M (eds) Endothelial cell biology in health and disease. Plenum, New York, pp 69–104

    Google Scholar 

  • Simionescu M (2007) Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27:266–274

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N (1991) Endothelial transport of macromolecules: transcytosis and endocytosis. A look from cell biology. Cell Biol Rev 25:1–78

    PubMed  CAS  Google Scholar 

  • Simionescu M, Simionescu N, Silbert JE, Palade GE (1981) Differentiated microdomains on the luminal surface of the capillary endothelium. II. Partial characterization of their anionic sites. J Cell Biol 90:614–621

    Article  PubMed  CAS  Google Scholar 

  • Simionescu M, Popov D, Sima A, Hasu M, Costache G, Faitar S, Vulpanovici A, Stancu C, Stern D, Simionescu N (1996) Pathobiochemistry of combined diabetes and atherosclerosis studied on a novel animal model: the hyperlipemic hyperglycemic hamster. Am J Pathol 148:997–1014

    PubMed  CAS  Google Scholar 

  • Simionescu M, Gafencu A, Antohe F (2002) Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 57:269–288

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N (1979) The microvascular endothelium. Segmental differentiation transcytosis: selective distribution of anionic sites. In: Weissman G, Samuelsson B, Paoletti R (eds) Advances in inflammation research, vol 1. Raven, New York, pp 61–70

    Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1975) Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol 64:586–607

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1976) Structural-functional correlates in the transendothelial exchange of water-soluble macromolecules. Thromb Res 8 (2 Suppl):257–269

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N, Lupu F, Simionescu M (1983) Rings of membrane sterols surround the openings of vesicles and fenestrae, in capillary endothelium. J Cell Biol 97:1592–1600

    Article  PubMed  CAS  Google Scholar 

  • Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis: accumulation of extracellular cholesterol rich liposomes in the arterial intima and cardiac valves of hyperlipidemic rabbits. Am J Pathol 123:85–101

    Google Scholar 

  • Simionescu N, Sima A, Dobrian A, Tîrziu D, Simionescu M (1993) Pathobiochemical changes of the arterial wall at the inception of atherosclerosis. Curr Top Pathol 87:1–45

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  PubMed  CAS  Google Scholar 

  • Soda R, Tavassoli M (1984) Liver endothelium and not hepatocytes or Kupffer cells have transferrin receptors. Blood 63:270–276

    PubMed  CAS  Google Scholar 

  • Soda R, Hardy CL, Kataoka M, Tavassoli M (1989) Endothelial mediation is necessary for subsequent hepatocyte uptake of transferrin. Am J Med Sci 297:314–320

    Article  PubMed  CAS  Google Scholar 

  • Spencer BJ, Verma IM (2007) Targeted delivery of proteins across the blood-brain barrier. Proc Natl Acad Sci USA 104:7594–7599

    Article  PubMed  CAS  Google Scholar 

  • Stan RV, Kubitza M, Palade GE (1999) PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc Natl Acad Sci USA 96:13203–13207

    Article  PubMed  CAS  Google Scholar 

  • Tavassoli M (1985) Liver endothelium binds, transports, and desialates ceruloplasmin which is then recognized by galactosyl receptors of hepatocytes. Trans Assoc Am Physicians 98:370–377

    PubMed  CAS  Google Scholar 

  • Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83:871–932

    PubMed  CAS  Google Scholar 

  • Vasile E, Simionescu M, Simionescu N (1983) Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol 96:1677–1689

    Article  PubMed  CAS  Google Scholar 

  • Vasile E, Antohe F, Simionescu M, Simionescu N (1989) Transport pathways of beta-VLDL by aortic endothelium of normal and hypercholesterolemic rabbits. Atherosclerosis 75:195–210

    Article  PubMed  CAS  Google Scholar 

  • Virchow R (1858) Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Hirschwald, Berlin

    Google Scholar 

  • Wang H, Wang AX, Liu Z, Barrett EJ (2008) Insulin signaling stimulates insulin transport by bovine aortic endothelial cells. Diabetes 57:540–547

    Article  PubMed  CAS  Google Scholar 

  • Waschke J, Golenhofen N, Kurzchalia TV, Drenckhahn D (2006) Protein kinase C-mediated endothelial barrier regulation is caveolin-1-dependent. Histochem Cell Biol 126:17–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Nicolae Simionescu who coined the term “transcytosis” and uncovered the concept of “receptor-mediated transcytosis”, based on previous work done together with Prof. George E. Palade and Dr. Maya Simionescu, providing a new avenue and a valuable tool to be exploited in therapeutic delivery of drugs. We are thankful to all scientists working in the field and to our collaborators that contributed to the collection of data presented in this review. The dedicated support of Mrs. Marilena Daju (computer assistance) and Mr. Ovidiu Croitoru (graphic design) is highly appreciated. The work was funded from grants obtained from NIH-USA, European Community, COST Action BM0602, the Romanian Academy and Ministry of Education and Research, Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Simionescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simionescu, M., Popov, D. & Sima, A. Endothelial transcytosis in health and disease. Cell Tissue Res 335, 27–40 (2009). https://doi.org/10.1007/s00441-008-0688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0688-3

Keywords

Navigation