Skip to main content

Advertisement

Log in

Analysis of Zfhx1a mutant mice reveals palatal shelf contact-independent medial edge epithelial differentiation during palate fusion

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cleft palate is a common birth defect that involves disruptions in multiple developmental steps such as growth, differentiation, elevation, and fusion. Medial edge epithelial (MEE) differentiation is essential for palate fusion. An important question is whether the MEE differentiation that occurs during fusion is induced by palate shelf contact or is programmed intrinsically by the palate shelf itself. Here, we report that the loss of Zfhx1a function in mice leads to a cleft palate phenotype that is mainly attributable to a delay in palate elevation. Zfhx1a encodes a transcription regulatory protein that modulates several signaling pathways including those activated by members of the transforming growth factor-β (TGF-β) superfamily. Loss of Zfhx1a function in mice leads to a complete cleft palate with 100% penetrance. Zfhx1a mutant palatal shelves display normal cell differentiation and proliferation and are able to fuse in an in vitro culture system. The only defect detected was a delay of 24–48 h in palatal shelf elevation. Using the Zfhx1a mutant as a model, we studied the relationship between MEE differentiation and palate contact/adhesion. We found that down-regulation of Jag2 expression in the MEE cells, a key differentiation event establishing palate fusion competence, was independent of palate contact/adhesion. Moreover, the expression of several key factors essential for fusion, such as TGF-β3 and MMP13, was also down-regulated at embryonic stage 16.5 in a contact-independent manner, suggesting that differentiation of the medial edge epithelium was largely programmed through an intrinsic mechanism within the palate shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alappat SR, Zhang Z, Suzuki K, Zhang X, Liu H, Jiang R, Yamada G, Chen Y (2005) The cellular and molecular etiology of the cleft secondary palate in Fgf10 mutant mice. Dev Biol 277:102–113

    Article  PubMed  CAS  Google Scholar 

  • Barrow JR, Capecchi MR (1999) Compensatory defects associated with mutations in Hoxa1 restore normal palatogenesis to Hoxa2 mutants. Development 126:5011–5026

    PubMed  CAS  Google Scholar 

  • Blavier L, Lazaryev A, Groffen J, Heisterkamp N, DeClerck YA, Kaartinen V (2001) TGF-beta3-induced palatogenesis requires matrix metalloproteinases. Mol Biol Cell 12:1457–1466

    PubMed  CAS  Google Scholar 

  • Cabanillas AM, Darling DS (1996) Alternative splicing gives rise to two isoforms of Zfhep, a zinc finger/homeodomain protein that binds T3-response elements. DNA Cell Biol 15:643–651

    PubMed  CAS  Google Scholar 

  • Carette MJ, Ferguson MW (1992) The fate of medial edge epithelial cells during palatal fusion in vitro: an analysis by DiI labelling and confocal microscopy. Development 114:379–388

    PubMed  CAS  Google Scholar 

  • Casey LM, Lan Y, Cho ES, Maltby KM, Gridley T, Jiang R (2006) Jag2-Notch1 signaling regulates oral epithelial differentiation and palate development. Dev Dyn 235:1830–1844

    Article  PubMed  CAS  Google Scholar 

  • Chai Y, Maxson RE Jr (2006) Recent advances in craniofacial morphogenesis. Dev Dyn 235:2353–2375

    Article  PubMed  Google Scholar 

  • Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127:1671–1679

    PubMed  CAS  Google Scholar 

  • Cui XM, Shiomi N, Chen J, Saito T, Yamamoto T, Ito Y, Bringas P, Chai Y, Shuler CF (2005) Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate. Dev Biol 278:193–202

    Article  PubMed  CAS  Google Scholar 

  • Darling DS, Gaur NK, Zhu B (1998) A zinc finger homeodomain transcription factor binds specific thyroid hormone response elements. Mol Cell Endocrinol 139:25–35

    Article  PubMed  CAS  Google Scholar 

  • Darling DS, Stearman RP, Qi Y, Qiu MS, Feller JP (2003) Expression of Zfhep/deltaEF1 protein in palate, neural progenitors, and differentiated neurons. Gene Expr Patterns 3:709–717

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Sun X, Liu W, Ai D, Klysik E, Lu MF, Hadley J, Antoni L, Chen L, Baldini A, Francis-West P, Martin JF (2006) Pitx2 promotes development of splanchnic mesoderm-derived branchiomeric muscle. Development 133:4891–4899

    Article  PubMed  CAS  Google Scholar 

  • Ferguson MW (1988) Palate development. Development 103 (Suppl):41–60

    PubMed  Google Scholar 

  • Fitzpatrick DR, Denhez F, Kondaiah P, Akhurst RJ (1990) Differential expression of TGF beta isoforms in murine palatogenesis. Development 109:585–595

    PubMed  CAS  Google Scholar 

  • Fortini ME, Lai ZC, Rubin GM (1991) The Drosophila zfh-1 and zfh-2 genes encode novel proteins containing both zinc-finger and homeodomain motifs. Mech Dev 34:113–122

    Article  PubMed  CAS  Google Scholar 

  • Funahashi J, Sekido R, Murai K, Kamachi Y, Kondoh H (1993) Delta-crystallin enhancer binding protein delta EF1 is a zinc finger-homeodomain protein implicated in postgastrulation embryogenesis. Development 119:433–446

    PubMed  CAS  Google Scholar 

  • Furusawa T, Moribe H, Kondoh H, Higashi Y (1999) Identification of CtBP1 and CtBP2 as corepressors of zinc finger-homeodomain factor deltaEF1. Mol Cell Biol 19:8581–8590

    PubMed  CAS  Google Scholar 

  • Genetta T, Ruezinsky D, Kadesch T (1994) Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Mol Cell Biol 14:6153–6163

    PubMed  CAS  Google Scholar 

  • Gritli-Linde A (2007) Molecular control of secondary palate development. Dev Biol 301:309–326

    Article  PubMed  CAS  Google Scholar 

  • Higashi Y, Moribe H, Takagi T, Sekido R, Kawakami K, Kikutani H, Kondoh H (1997) Impairment of T cell development in deltaEF1 mutant mice. J Exp Med 185:1467–1479

    Article  PubMed  CAS  Google Scholar 

  • Hilliard SA, Yu L, Gu S, Zhang Z, Chen YP (2005) Regional regulation of palatal growth and patterning along the anterior-posterior axis in mice. J Anat 207:655–667

    PubMed  Google Scholar 

  • Jiang R, Lan Y, Chapman HD, Shawber C, Norton CR, Serreze DV, Weinmaster G, Gridley T (1998) Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 12:1046–1057

    Article  PubMed  CAS  Google Scholar 

  • Jin JZ, Ding J (2006) Analysis of Meox-2 mutant mice reveals a novel postfusion-based cleft palate. Dev Dyn 235:539–546

    Article  PubMed  CAS  Google Scholar 

  • Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11:415–421

    Article  PubMed  CAS  Google Scholar 

  • Lai ZC, Fortini ME, Rubin GM (1991) The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mech Dev 34:123–134

    Article  PubMed  CAS  Google Scholar 

  • Lan Y, Ovitt CE, Cho ES, Maltby KM, Wang Q, Jiang R (2004) Odd-skipped related 2 (Osr2) encodes a key intrinsic regulator of secondary palate growth and morphogenesis. Development 131:3207–3216

    Article  PubMed  CAS  Google Scholar 

  • Lavrin IO, McLean W, Seegmiller RE, Olsen BR, Hay ED (2001) The mechanism of palatal clefting in the Col11a1 mutant mouse. Arch Oral Biol 46:865–869

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Sun X, Braut A, Mishina Y, Behringer RR, Mina M, Martin JF (2005) Distinct functions for Bmp signaling in lip and palate fusion in mice. Development 132:1453–1461

    Article  PubMed  CAS  Google Scholar 

  • Moribe H, Takagi T, Kondoh H, Higashi Y (2000) Suppression of polydactyly of the Gli3 mutant (extra toes) by deltaEF1 homozygous mutation. Dev Growth Differ 42:367–376

    Article  PubMed  CAS  Google Scholar 

  • Murray JC, Schutte BC (2004) Cleft palate: players, pathways, and pursuits. J Clin Invest 113:1676–1678

    PubMed  CAS  Google Scholar 

  • Nishimura G, Manabe I, Tsushima K, Fujiu K, Oishi Y, Imai Y, Maemura K, Miyagishi M, Higashi Y, Kondoh H, Nagai R (2006) DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell 11:93–104

    Article  PubMed  CAS  Google Scholar 

  • Pelton RW, Hogan BL, Miller DA, Moses HL (1990) Differential expression of genes encoding TGFs beta 1, beta 2, and beta 3 during murine palate formation. Dev Biol 141:456–460

    Article  PubMed  CAS  Google Scholar 

  • Postigo AA (2003) Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J 22:2443–2452

    Article  PubMed  CAS  Google Scholar 

  • Postigo AA, Dean DC (1997) ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negative regulator of muscle differentiation. EMBO J 16:3935–3943

    Article  PubMed  CAS  Google Scholar 

  • Postigo AA, Dean DC (1999) ZEB represses transcription through interaction with the corepressor CtBP. Proc Natl Acad Sci USA 96:6683–6688

    Article  PubMed  CAS  Google Scholar 

  • Postigo AA, Depp JL, Taylor JJ, Kroll KL (2003) Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J 22:2453–2462

    Article  PubMed  CAS  Google Scholar 

  • Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T (1995) Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet 11:409–414

    Article  PubMed  CAS  Google Scholar 

  • Pungchanchaikul P, Gelbier M, Ferretti P, Bloch-Zupan A (2005) Gene expression during palate fusion in vivo and in vitro. J Dent Res 84:526–531

    Article  PubMed  CAS  Google Scholar 

  • Rice R, Spencer-Dene B, Connor EC, Gritli-Linde A, McMahon AP, Dickson C, Thesleff I, Rice DP (2004) Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate. J Clin Invest 113:1692–1700

    PubMed  CAS  Google Scholar 

  • Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124:2659–2670

    PubMed  CAS  Google Scholar 

  • Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6:348–356

    Article  PubMed  CAS  Google Scholar 

  • Seegmiller RE, Fraser FC (1977) Mandibular growth retardation as a cause of cleft palate in mice homozygous for the chondrodysplasia gene. J Embryol Exp Morphol 38:227–238

    PubMed  CAS  Google Scholar 

  • Sekido R, Takagi T, Okanami M, Moribe H, Yamamura M, Higashi Y, Kondoh H (1996) Organization of the gene encoding transcriptional repressor deltaEF1 and cross-species conservation of its domains. Gene 173:227–232

    Article  PubMed  CAS  Google Scholar 

  • Shen MM (2001) Identification of differentially expressed genes in mouse development using differential display and in situ hybridization. Methods 24:15–27

    Article  PubMed  CAS  Google Scholar 

  • Takagi T, Moribe H, Kondoh H, Higashi Y (1998) DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development 125:21–31

    PubMed  CAS  Google Scholar 

  • Taya Y, O’Kane S, Ferguson MW (1999) Pathogenesis of cleft palate in TGF-beta3 knockout mice. Development 126:3869–3879

    PubMed  CAS  Google Scholar 

  • Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, Nelles L, Wuytens G, Su MT, Bodmer R, Smith JC, Huylebroeck D (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 274:20489–20498

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Han J, Ito Y, Bringas P Jr, Urata MM, Chai Y (2006) Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion. Dev Biol 297:238–248

    Article  PubMed  CAS  Google Scholar 

  • Yen G, Croci A, Dowling A, Zhang S, Zoeller RT, Darling DS (2001) Developmental and functional evidence of a role for Zfhep in neural cell development. Brain Res Mol Brain Res 96:59–67

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Gu S, Alappat S, Song Y, Yan M, Zhang X, Zhang G, Jiang Y, Zhang Z, Zhang Y, Chen Y (2005) Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate. Development 132:4397–4406

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Song Y, Zhao X, Zhang X, Fermin C, Chen Y (2002) Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Development 129:4135–4146

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yiping Chen at the Ohio State University, Dr. Rulang Jiang at the University of Rochester, and Dr. Mary B. Goldring at Harvard Medical School for providing in situ probes, and Dr. Dennis Warner for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Douglas S. Darling or Jixiang Ding.

Additional information

Correspondence should be addressed to Dr. Douglas S. Darling and Dr. Jixiang Ding.

This work is supported by the COBRE program of the National Center for Research Resource (P20RR017702 to the University of Louisville Birth Defects Center) and by research grants (EY017869 and DE13614 to D.D.; DE015565 and DE016845 to J.D.) from the National Institutes of Health, USA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

supplemental figure

Whole-mount in situ hybridization followed by sectioning and showing expression of Zfhx1a mRNA in mouse secondary palate on E12.5 and E13.5. a, b Zfhx1a mRNA was detected in the mouse secondary palate on E12.5 (arrows in a), and the expression was decreased on E13.5 (arrows in b). c, d Sections of whole-mount in situ hybridization at E12.5 (c) and E13.5 (d) showing the expression of Zfhx1a mRNA only in mesenchymal cells (arrows). Bars 200 μm (a, b), 100 μm (c, d) (GIF 443 kb)

High resolution image file (TIF 10529 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, JZ., Li, Q., Higashi, Y. et al. Analysis of Zfhx1a mutant mice reveals palatal shelf contact-independent medial edge epithelial differentiation during palate fusion. Cell Tissue Res 333, 29–38 (2008). https://doi.org/10.1007/s00441-008-0612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-008-0612-x

Keywords

Navigation