Skip to main content

Advertisement

Log in

Cellular prion protein electron microscopy: attempts/limits and clues to a synaptic trait. Implications in neurodegeneration process

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Prion diseases are caused by an infectious agent constituted by a rogue protein called prion (PrPSc) of neuronal origin (PrPc) and are exemplified by Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Considerable efforts have been made to understand the cerebral damage caused by these diseases but a clear comprehensive view cannot be achieved without defining the neurophysiological function of PrPc. This lack of information is in part attributable to our ignorance of the precise localization of PrPc in the brain neuronal cell. One relevant option to explore this aspect is to undertake PrP immunohistochemistry at the electron-microscopy level, knowing that this challenge raises major technical constraints. In describing the attempts and restrictions of the various approaches used, we review here the efforts that have been invested in this particular field of prionology. The common result emerging from these contributions is that the synapse could be the site at which PrPc exerts its critical activity. This location suggests, in the perspective of synaptic regulation, that PrPc can be assigned multiple biological functions and supports the novel concept that prion-like changes are involved in long-term memory formation. The synaptic trait of PrPc and PrPSc suggests that synapse loss is the key event in neuronal death. Interestingly, synaptic alterations are also considered to be predominant in the pathophysiological mechanism in Alzheimer, Parkinson and Huntington diseases. All these brain disorders, characterized by the formation of a specific amyloid protein of synaptic origin, can be classified under the heading of amyloidogenic synaptopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arendt T (2003) Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: the “Dr. Jekyll and Mr. Hyde concept” of Alzheimer’s disease or the yin and yang of neuroplasticity. Prog Neurobiol 71:83–248

    Article  PubMed  Google Scholar 

  • Bailey CH, Kandel ER, Si K (2004) The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron 44:49–57

    Article  PubMed  CAS  Google Scholar 

  • Bailly Y, Haeberlé AM, Blanquet-Grossard F, Chasserot-Golaz S, Grant N, Schulze T, Bombarde G, Grassi J, Cesbron JY, Lemaire-Vieille C (2004) Prion protein (PrPc) immunocytochemistry and expression of the green fluorescent protein reporter gene under control of the bovine PrP gene promoter in the mouse brain. J Comp Neurol 473:244–269

    Article  PubMed  CAS  Google Scholar 

  • Barmada S, Piccardo P, Yamaguchi K, Ghetti B, Harris DA (2004) GFP-tagged prion protein is correctly localized and functionally active in the brains of transgenic mice. Neurobiol Dis 16:527–537

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Koliatsos VE, Guarnieri M, Pardo CA, Sisodia SS, Price DL (1994) Rapid anterograde axonal transport of the cellular prion glycoprotein in the peripheral and central nervous systems. J Biol Chem 269:14711–14714

    PubMed  CAS  Google Scholar 

  • Bouzamondo E, Milroy AM, Ralston HJ 3rd, Prusiner SB, DeArmond SJ (2000) Selective neuronal vulnerability during experimental scrapie infection: insights from an ultrastructural investigation. Brain Res 874:210–215

    Article  PubMed  CAS  Google Scholar 

  • Bouzamondo-Bernstein E, Hopkins SD, Spilman P, Uyehara-Lock J, Deering C, Safar J, Prusiner SB, Ralston HJ 3rd, DeArmond SJ (2004) The neurodegeneration sequence in prion diseases: evidence from functional, morphological and ultrastructural studies of the GABAergic system. J Neuropathol Exp Neurol 63:882–899

    PubMed  CAS  Google Scholar 

  • Brown DR (2001) Prion and prejudice: normal protein and the synapse. Trends Neurosci 24:85–90

    Article  PubMed  CAS  Google Scholar 

  • Butowt R, Davies P, Brown DR (2007) Anterograde axonal transport of chicken cellular prion protein (PrP(c)) in vivo requires its N-terminal part. J Neurosci Res 85:2567–2579

    Article  PubMed  CAS  Google Scholar 

  • Campana V, Sarnataro D, Zurzolo C (2005) The highways and byways of prion protein trafficking. Trends Cell Biol 15:102–111

    Article  PubMed  CAS  Google Scholar 

  • Carleton A, Tremblay P, Vincent JD, Lledo PM (2001) Dose-dependent, prion protein (PrP)-mediated facilitation of excitatory synaptic transmission in the mouse hippocampus. Pflugers Arch 442:223–229

    Article  PubMed  CAS  Google Scholar 

  • Clinton J, Forsyth C, Royston MC, Roberts GW (1993) Synaptic degeneration is the primary neuropathological feature in prion disease: a preliminary study. NeuroReport 4:65–68

    Article  PubMed  CAS  Google Scholar 

  • Coitinho AS, Freitas AR, Lopes MH, Hajj GN, Roesler R, Walz R, Rossato JI, Cammarota M, Izquierdo I, Martins VR, Brentani RR (2006) The interaction between prion protein and laminin modulates memory consolidation. Eur J Neurosci 24:3255–3264

    Article  PubMed  Google Scholar 

  • Coitinho AS, Lopes MH, Hajj GN, Rossato JI, Freitas AR, Castro CC, Cammarota M, Brentani RR, Izquierdo I, Martins VR ( 2007) Short-term memory formation and long-term memory consolidation are enhanced by cellular prion association to stress-inducible protein 1. Neurobiol Dis 26:282–290

    Article  PubMed  CAS  Google Scholar 

  • Colling SB, Khana M, Collinge J, Jefferys JG (1997) Mossy fibre reorganization in the hippocampus of prion protein null mice. Brain Res 755:28–35

    Article  PubMed  CAS  Google Scholar 

  • Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297

    Article  PubMed  CAS  Google Scholar 

  • Criado JR, Sanchez-Alavez M, Conti B, Giacchino JL, Wills DN, Henriksen SJ, Race R, Manson JC, Chesebro B, Oldstone MB (2005) Mice devoid of prion protein have cognitive deficits that are rescued by reconstitution of PrP in neurons. Neurobiol Dis 19:255–265

    Article  PubMed  CAS  Google Scholar 

  • Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JN, Perry VH (2003) Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 17:2147–2155

    Article  PubMed  CAS  Google Scholar 

  • Curtis J, Errington M, Bliss T, Voss K, MacLeod N (2003) Age-dependent loss of PTP and LTP in the hippocampus of PrP-null mice. Neurobiol Dis 3:55–62

    Article  Google Scholar 

  • Davies HA, Kelly A, Dhanrajan TM, Lynch MA, Rodriguez JJ, Stewart MG (2003) Synaptophysin immunogold labelling of synapses decreases in dentate gyrus of the hippocampus of aged rats. Brain Res 986:191–195

    Article  PubMed  CAS  Google Scholar 

  • DeArmond SJ, McKinley MP, Barry RA, Braunfeld MB, McColloch JR, Prusiner SB (1985) Identification of prion amyloid filaments in scrapie-infected brain. Cell 41:221–235

    Article  PubMed  CAS  Google Scholar 

  • Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 16:717–720

    Article  Google Scholar 

  • Della-Bianca V, Rossi F, Armato U, Dal-Pra I, Costantini C, Perini G, Politi V, Della Valle G (2001) Neurotrophin p75 receptor is involved in neuronal damage by prion peptide-(106-126). J Biol Chem 276:38929–38933

    Article  PubMed  CAS  Google Scholar 

  • Evergren E, Benfenati F, Shupliakov O (2007) The synapsin cycle: a view from the synaptic endocytic zone. J Neurosci Res 85:2648–2656

    Article  PubMed  CAS  Google Scholar 

  • Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648

    Article  PubMed  Google Scholar 

  • Fischer von Mollard G, Stahl B, Walch-Solimena C, Takei K, Daniels L, Khoklatchev A, De Camilli P, Sudhof TC, Jahn R (1994) Localization of Rab5 to synaptic vesicles identifies endosomal intermediate in synaptic vesicle recycling pathway. Eur J Cell Biol 65:319–326

    PubMed  CAS  Google Scholar 

  • Fournier JG (2000) Introduction to histological localization of prion proteins. Microsc Res Tech 50:1

    Article  PubMed  Google Scholar 

  • Fournier JG, Escaig-Haye F (1999) In situ molecular hybridization techniques for ultra-thin sections. In: Hajibagheri MA (ed) Electron microscopy, methods and protocols. Methods in molecular biology. Humana, Totawa, pp 167–182

    Chapter  Google Scholar 

  • Fournier JG, Grigoriev V (2001) Prion diseases: contribution of high-resolution immunomorphology. J Cell Mol Med 50:76–88

    Google Scholar 

  • Fournier JG, Escaig-Haye F, Billette de Villemeur T, Robain O (1995) Ultrastructural localization of cellular prion protein (PrPc) in synaptic boutons of normal hamster hippocampus. CR Acad Sci Paris 318:339–344

    CAS  Google Scholar 

  • Fournier JG, Escaig-Haye F, Billette de Villemeur T, Robain O (1997) Synaptic aspects of cellular prion protein. In: Festoff B, Hantai D, Citron BA (eds) Advances in organ biology, vol 2. J AI Press, Greenwich, Connecticut, pp 99–111

    Google Scholar 

  • Fournier JG, Escaig-Haye F, Grigoriev V (2000a) Ultrastructural localization of prion proteins: physiological and pathological implications. Microsc Res Tech 50:76–88

    Article  PubMed  CAS  Google Scholar 

  • Fournier JG, Kopp N, Streichenberger N, Escaig-Haye F, Langeveld J, Brown P (2000b) Electron microsocopy of brain amyloid plaques from a patient with new variant Creutzfeldt-Jakob disease. Acta Neuropathol (Berl) 99:637–642

    Article  CAS  Google Scholar 

  • Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20:5863–5875

    Article  PubMed  CAS  Google Scholar 

  • Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, Veiga SS, Juliano MA, Roesler R, Walz R, Minetti A, Izquierdo I, Martins VR, Brentani RR (2000) Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 76:85–92

    Article  PubMed  CAS  Google Scholar 

  • Grigoriev V, Escaig-Haye F, Streichenberger N, Kopp N, Langeveld J, Brown P, Fournier JG (1999) Submicroscopic immunodetection of PrP in the brain of a patient with a new-variant of Creutzfeldt-Jakob disease. Neurosci Lett 264:57–60

    Article  PubMed  CAS  Google Scholar 

  • Haeberlé A, Ribaut-Barassin C, Bombarde G, Mariani J, Hunsmann G, Grassi J, Bailly Y (2000) Synaptic prion protein immuno-reactivity in the rodent cerebellum. Microsc Res Tech 50:66–75

    Article  PubMed  Google Scholar 

  • Herms J, Tings T, Gall, S, Madlung A, Giese A, Siebert H, Schurmann P, Windl O, Brose N, Kretzschmar H (1999) Evidence of presynaptic localization and function of the prion protein. J Neurosci 19:8866–8875

    PubMed  CAS  Google Scholar 

  • Herrera GA, Lowery MC, Turbat-Herrera EA (2000) Immunoelectron microscopy in the age of molecular pathology. Appl Immunohistochem Mol Morphol 8:87–97

    Article  PubMed  CAS  Google Scholar 

  • Ishikura N, Clever JL, Bouzamondo-Bernstein E, Samayoa E, Prusiner SB, Huang EJ, DeArmond SJ (2005) Notch-1 activation and dendritic atrophy in prion disease. Proc Natl Acad Sci USA 102:886–891

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey M, Goodsir CM, Fowler N, Hope J, Bruce ME, McBride PA (1996) Ultrastructural immuno-localization of synthetic prion protein peptide antibodies in 87V murine scrapie. Neurodegeneration 5:101–109

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey M, Halliday WG, Bell J, Johnston AR, MacLeod NK, Ingham C, Sayers AR, Brown DA, Fraser JR (2000) Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 26:41–54

    Article  PubMed  CAS  Google Scholar 

  • Keshet GI, Bar-Peled O, Yaffe D, Nudel U, Gabizon R (2000) The cellular prion protein colocalizes with the dystroglycan complex in the brain. J Neurochem 75:1889–1897

    Article  PubMed  CAS  Google Scholar 

  • Korth C, Stierli B, Streit P, Moser M, Schaller O, Fischer R, Schulz-Schaeffer W, Kretzschmar H, Raeber A, Braun U, Ehrensperger F, Hornemann S, Glockshuber R, Riek R, Billeter M, Wuthrich K, Oesch B (1997) Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390:74–77

    Article  PubMed  CAS  Google Scholar 

  • Kovacs GG, Preusser M, Strohschneider M, Budka H (2005) Subcellular localization of disease-associated prion protein in the human brain. Am J Pathol 1661:287–294

    Google Scholar 

  • Laine J, Marc ME, Sy MS, Axelrad H (2001) Cellular and subcellular morphological localization of normal prion protein in rodent cerebellum. Eur J Neurosci 14:47–56

    Article  PubMed  CAS  Google Scholar 

  • Laszlo L, Lowe J, Self T, Kenward N, Landon M, McBride T, Farquhar C, McConnell I, Brown J, Hope J (1992) Lysosomes as key organelles in the pathogenesis of prion encephalopathies. J Pathol 166:333–341

    Article  PubMed  CAS  Google Scholar 

  • Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305:673–676

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Li R, Pan T, Liu D, Petersen RB, Wong BS, Gambetti P, Sy MS (2002) Intercellular transfer of the cellular prion protein. J Biol Chem 277:47671–47677

    Article  PubMed  CAS  Google Scholar 

  • Lopes MH, Hajj GN, Muras AG, Mancini GL, Castro RM, Ribeiro KC, Brentani RR, Linden R, Martins VR (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. Neuroscience 25:11330–11339

    Article  PubMed  CAS  Google Scholar 

  • Lujan R (2004) Electron microscopic studies of receptor localization. Methods Mol Biol 259:123–136

    PubMed  CAS  Google Scholar 

  • Magalhaes AC, Silva JA, Lee KS, Martins VR, Prado VF, Ferguson SS, Gomez MV, Brentani RR, Prado MA (2002) Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein. J Biol Chem 277:33311–33318

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes AC, Baron GS, Lee KS, Steele-Mortimer O, Dorward D, Prado MA, Caughey B (2005) Uptake and neuritic transport of scrapie prion protein coincident with infection of neuronal cells. J Neurosci 25:5207–5216

    Article  PubMed  CAS  Google Scholar 

  • Maglio LA, Perez MF, Martins VR (2004) Hippocampal synaptic plasticity in mice devoid of cellular prion protein. Brain Res Mol Brain Res 131:58–64

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan A, Shankar SK, Yasha TC, Santosh V, Sarkar C, Desai AP, Satishchandra P (2002) Brain biopsy in Creutzfeldt-Jakob disease: evolution of pathological changes by prion protein immunohistochemistry. Neuropathol Appl Neurobiol 28:314–324

    Article  PubMed  CAS  Google Scholar 

  • Mahendrasingam S, Wallam CA, Hackney CM (2003) Two approaches to double post-embedding immunogold labeling of freeze-substituted tissue embedded in low temperature Lowicryl HM20 resin. Brain Res Brain Res Protoc 11:134–141

    Article  PubMed  CAS  Google Scholar 

  • Makarova A, Mikhailenko I, Bugge TH, List K, Lawrence DA, Strickland DK (2003) The low density lipoprotein receptor-related protein modulates protease activity in the brain by mediating the cellular internalization of both neuroserpin and neuroserpin-tissue-type plasminogen activator complexes. J Biol Chem 278:50250–50258

    Article  PubMed  CAS  Google Scholar 

  • Mallozzi C, Di Stasi AM, Minetti M (1999) Activation of src tyrosine kinases by peroxynitrite. FEBS Lett 456:201–206

    Article  PubMed  CAS  Google Scholar 

  • Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, Brandner S, Jefferys JG, Collinge J (2007) Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 53:325–335

    Article  PubMed  CAS  Google Scholar 

  • May P, Rohlmann A, Bock HH, Zurhove K, Marth JD, Schomburg ED, Noebels JL, Beffert U, Sweatt JD, Weeber EJ, Herz J (2004) Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol Cell Biol 24:8872–8883

    Article  PubMed  CAS  Google Scholar 

  • McPherson PS, Czernik AJ, Chilcote TJ, Onofri F, Benfenati F, Greengard P, Schlessinger J, De Camilli P (1994) Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc Natl Acad Sci USA 91:6486–6490

    Article  PubMed  CAS  Google Scholar 

  • Mironov A Jr, Latawiec D, Wille H, Bouzamondo-Bernstein E, Legname G, Williamson RA, Burton D, DeArmond SJ, Prusiner SB, Peters PJ (2003) Cytosolic prion protein in neurons. J Neurosci 23:7183–7193

    PubMed  CAS  Google Scholar 

  • Morris RJ, Parkyn CJ, Jen A (2006) Traffic of prion protein between different compartments on the neuronal surface, and the propagation of prion disease. FEBS Lett 580:5565–5571

    Article  PubMed  CAS  Google Scholar 

  • Moya KL, Sales N, Hassig R, Creminon C, Grassi J, Di Giamberardino L (2000) Immunolocalization of the cellular prion protein in normal brain. Microsc Res Tech 50:58–65

    Article  PubMed  CAS  Google Scholar 

  • Moya KL, Hassig R, Breen KC, Volland H, Di Giamberardino L (2005) Axonal transport of the cellular prion protein is increased during axon regeneration. J Neurochem 92:1044–1053

    Article  PubMed  CAS  Google Scholar 

  • Nishina K, Deleault NR, Lucassen RW, Supattapone S (2004) In vitro prion protein conversion in detergent-solubilized membranes. Biochemistry 43:2613–2622

    Article  PubMed  CAS  Google Scholar 

  • Pan T, Wong BS, Liu T, Li R, Petersen RB, Sy MS (2002) Cell-surface prion protein interacts with glycosaminoglycans. Biochem J 368:81–90

    Article  PubMed  CAS  Google Scholar 

  • Papassotiropoulos A, Wollmer MA, Aguzzi A, Hock C, Nitsch RM, Quervain DJ de (2005) The prion gene is associated with human long-term memory. Hum Mol Genet 14:2241–2255

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro TJ (2006) The role of rafts in the fibrillization and aggregation of prions. Chem Phys Lipids 141:66–67

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  PubMed  CAS  Google Scholar 

  • Prusiner SB (1998) Prions. Proc Nat Acad Sci USA 95:13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Rangel A, Burgaya F, Gavin R, Soriano E, Aguzzi A, Del Rio JA (2007) Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: role of AMPA/kainate receptors. J Neurosci Res 85:2741-2755

    Article  PubMed  CAS  Google Scholar 

  • Riek R, Luhrs T (2003) Three-dimensional structures of the prion protein and its doppel. Clin Lab Med 23:209–225

    Article  PubMed  Google Scholar 

  • Roucou X, Gains M, LeBlanc AC (2004) Neuroprotective functions of prion protein. J Neurosci Res 75:153–161

    Article  PubMed  CAS  Google Scholar 

  • Safar JG, DeArmond SJ, Kociuba K, Deering C, Didorenko S, Bouzamondo-Bernstein E, Prusiner SB, Tremblay P (2005) Prion clearance in bigenic mice. J Gen Virol 86:2913–2923

    Article  PubMed  CAS  Google Scholar 

  • Salès N, Rodolfo K, Hassig R, Faucheux B, Di Giamberardino L, Moya KL (1998) Cellular prion protein localization in rodent and primate brain. Eur J Neurosci 10:2464–2471

    Article  PubMed  Google Scholar 

  • Salès N, Fournier JG, Freire S, Burel M, Deslys JP, Lasmezas CI (2004) Immunohistochemical localization of prion protein in simian eyes (Abstract). Proceedings of the First International Conference of Neuroprion Network, Paris, no. 129

  • Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169:341–354

    Article  PubMed  CAS  Google Scholar 

  • Scallet AC, Ye X (1997) Excitotoxic mechanisms of neurodegeneration in transmissible spongiform encephalopathies. Ann N Y Acad Sci 825:194–205

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, DeArmond SJ, Cohen FE, Prusiner SB (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314:1209–1225

    Article  PubMed  CAS  Google Scholar 

  • Si K, Lindquist S, Kandel ER (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115:879–891

    Article  PubMed  CAS  Google Scholar 

  • Soto C (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett 498:204–207

    Article  PubMed  CAS  Google Scholar 

  • Spielhaupter C, Schatzl HM (2001) PrPC directly interacts with proteins involved in signaling pathways. J Bio Chem 76:44604–44612

    Article  Google Scholar 

  • Stevens CF (2004) Presynaptic function. Curr Opin Neurobiol 14:341–345

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  Google Scholar 

  • Taylor DR, Hooper NM (2007) The low-density lipoprotein receptor-related protein 1 (LRP1) mediates the endocytosis of the cellular prion protein. Biochem J 402:17–23

    Article  PubMed  CAS  Google Scholar 

  • Ushkaryov YA, Petrenko AG, Geppert M, Sudhof TC (1992) Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 257:50–56

    Article  PubMed  CAS  Google Scholar 

  • Valentino KL, Crumrine DA, Reichardt LF (1985) Lowicryl K4M embedding of brain tissue for immunogold electron microscopy. J Histochem Cytochem 33:969–973

    PubMed  CAS  Google Scholar 

  • Vassallo N, Herms J (2003) Cellular prion protein function in copper homeostasis and redox signalling at the synapse. J Neurochem 86:538–544

    Article  PubMed  CAS  Google Scholar 

  • Waites CL, Craig AM, Garner CG (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274

    Article  PubMed  CAS  Google Scholar 

  • Wiley CA, Burrola PG, Buchmeier MJ, Wooddell MK, Barry RA, Prusiner SB (1987) Immunogold localization of prion filaments in scrapie-infected hamster brain. Lab Invest 57:646–656

    PubMed  CAS  Google Scholar 

  • Wilkinson RS, Lin MY (2004) Endocytosis and synaptic plasticity: might the tail wag the dog? Trends Neurosci 27:171–174

    Article  PubMed  CAS  Google Scholar 

  • Yun SW, Gerlach M, Riederer P, Klein MA (2006) Oxidative stress in the brain at early preclinical stages of mouse scrapie. Exp Neurol 201:90–98

    Article  PubMed  CAS  Google Scholar 

  • Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, Oliveira E de, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21:3307–3316

    Article  PubMed  CAS  Google Scholar 

  • Zhai RG, Bellen HJ (2004) The architecture of the active zone in the presynaptic nerve terminal. Physiology (Bethesda) 19:262–267

    Google Scholar 

Download references

Acknowledgements

I wish to thank S. Braithwaithe, M.M. Ruchoux, and S. Simoneau for editing the manuscript and A. Roig for the design work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Guy Fournier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fournier, JG. Cellular prion protein electron microscopy: attempts/limits and clues to a synaptic trait. Implications in neurodegeneration process. Cell Tissue Res 332, 1–11 (2008). https://doi.org/10.1007/s00441-007-0565-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0565-5

Keywords

Navigation