Skip to main content

Insoluble Cellular Prion Protein and Other Neurodegeneration-Related Protein Aggregates in the Brain of Asymptomatic Individuals

  • Chapter
  • First Online:
Prions and Diseases
  • 822 Accesses

Abstract

The pathological detergent-insoluble prion protein (PrPSc) is derived from its normal detergent-soluble cellular form (PrPC) through a structural transition from α-helixes into β-sheets, which is associated with a group of transmissible neurodegenerative diseases or prion diseases. According to the prevailing seeding model, PrPSc formation requires a precursor of PrPSc or an intermediate form between PrPC and PrPSc. However, the precursor or intermediate form in the brain remains to be determined. In 2006, we identified in uninfected human and animal brains a novel PrP conformer termed insoluble PrPC (iPrPC) that possesses PrPSc-like properties such as detergent-insolubility, resistance to protease, and tendency to form aggregates. Notably, other common neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) have recently been proposed to share a prion-like seeding mechanism by which the detergent-soluble brain monomeric cellular proteins form the detergent-insoluble misfolded protein aggregates that transmit from cells to cells. This chapter reviews the physiochemical properties of iPrPC and discusses its formation and pathophysiology. It also highlights the findings and implications of other misfolded proteins such as amyloid-β, tau, and α-synuclein associated with AD and PD in the brain of asymptomatic individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apetri AC, Surewicz WK. Kinetic intermediate in the folding of human prion protein. J Biol Chem. 2002;277:44589–92.

    Article  CAS  Google Scholar 

  • Apetri AC, Surewicz K, Surewicz WK. The effect of disease-associated mutations on the folding pathway of human prion protein. J Biol Chem. 2004;279:18008–14.

    Article  CAS  Google Scholar 

  • Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A. 2010;107:2295–300.

    Google Scholar 

  • Barria MA, Mukherjee A, Gonzalez-Romero D, Morales R, Soto C. De novo generation of infectious prions in vitro produces a new disease phenotype. PLoS Pathog. 2009;5:e1000421.

    Article  Google Scholar 

  • Baskakov IV, Legname G, Prusiner SB, Cohen FE. Folding of prion protein to its native alpha-helical conformation is under kinetic control. J Biol Chem. 2001;276:19687–90.

    Article  CAS  Google Scholar 

  • Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE. Pathway complexity of prion protein assembly into amyloid. J Biol Chem. 2002;277:21140–8.

    Article  CAS  Google Scholar 

  • Baskakov IV, Legname G, Gryczynski Z, Prusiner SB. The peculiar nature of unfolding of the human prion protein. Protein Sci. 2004;13:586–95.

    Article  CAS  Google Scholar 

  • Bera A, Biring S. A quantitative characterization of interaction between prion protein with nucleic acids. Biochem Biophys Rep. 2018;14:114–24.

    Google Scholar 

  • Bessen RA, Marsh RF. Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol. 1992;73:329–34.

    Article  Google Scholar 

  • Bloch A, Probst A, Bissig H, Adams H, Tolnay M. Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol. 2006;32:284–95.

    Article  CAS  Google Scholar 

  • Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, et al. Protein phase separation: a new phase in cell biology. Trends Cell Biol. 2018;28:420–35.

    Article  CAS  Google Scholar 

  • Bove-Fenderson E, Urano R, Straub JE, Harris DA. Cellular prion protein targets amyloid-β fibril ends via its C-terminal domain to prevent elongation. J Biol Chem. 2017;292:16858–71.

    Article  CAS  Google Scholar 

  • Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  CAS  Google Scholar 

  • Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271–84.

    Article  CAS  Google Scholar 

  • Braak H, Del Tredici K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 2011;121:171–81.

    Article  Google Scholar 

  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  Google Scholar 

  • Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–9.

    Article  CAS  Google Scholar 

  • Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009;324:1729–32.

    Article  CAS  Google Scholar 

  • Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, et al. The cellular prion protein binds copper in vivo. Nature. 1997;390:684–7.

    Google Scholar 

  • Brown DR, Clive C, Haswell SJ. Antioxidant activity related to copper binding of native prion protein. J Neurochem. 2001;76:69–76.

    Google Scholar 

  • Buchmann A, Mondadori CR, Hänggi J, Aerni A, Vrticka P, Luechinger R, Boesiger P, Hock C, Nitsch RM, de Quervain DJ, Papassotiropoulos A, Henke K. Prion protein M129V polymorphism affects retrieval-related brain activity. Neuropsychologia. 2008;46:2389–402.

    Article  Google Scholar 

  • Buschmann A, Kuczius T, Bodemer W, Groschup MH. Cellular prion proteins of mammalian species display an intrinsic partial proteinase K resistance. Biochem Biophys Res Commun. 1998;253:693–702.

    Article  CAS  Google Scholar 

  • Capellari S, Zaidi SI, Long AC, Kwon EE, Petersen RB. The Thr183Ala mutation, not the loss of the first glycosylation site, alters the physical properties of the prion protein. J Alzheimers Dis. 2000;2:27–35.

    Article  CAS  Google Scholar 

  • Castilla J, Saá P, Hetz C, Soto C. In vitro generation of infectious scrapie prions. Cell. 2005;121:195–206.

    Article  CAS  Google Scholar 

  • Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS. Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry. 1991;30:7672–80.

    Article  CAS  Google Scholar 

  • Caughey B, Raymond GJ, Bessen RA. Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J Biol Chem. 1998;273:32230–5.

    Article  CAS  Google Scholar 

  • Chen AK, Lin RY, Hsieh EZ, Tu PH, Chen RP, Liao TY, et al. Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. J Am Chem Soc. 2010;132:1186–7.

    Article  CAS  Google Scholar 

  • Chiesa R, Piccardo P, Biasini E, Ghetti B, Harris DA. Aggregated, wild-type prion protein causes neurological dysfunction and synaptic abnormalities. J Neurosci. 2008;28:13258–67.

    Article  CAS  Google Scholar 

  • Clavaguera F, Bolmont T, Crowther RA, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11:909–13.

    Article  CAS  Google Scholar 

  • Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science. 2007;318:930–6.

    Article  CAS  Google Scholar 

  • Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, et al. Prion protein is necessary for normal synaptic function. Nature. 1994;370:295–7.

    Article  CAS  Google Scholar 

  • Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128:755–66.

    Article  CAS  Google Scholar 

  • Das AS, Zou WQ. Prions: beyond a single protein. Cli Microbio Rev. 2016;29:633–58.

    Article  Google Scholar 

  • Daude N, Lehmann S, Harris DA. Identification of intermediate steps in the conversion of a mutant prion protein to a scrapie-like form in cultured cells. J Biol Chem. 1997;272(17):11604–12. Erratum in J Biol Chem 2000;275:1520

    Article  CAS  Google Scholar 

  • Del Tredici K, Braak H. Neurofibrillary changes of the Alzheimer type in very elderly individuals: neither inevitable nor benign: commentary on “No disease in the brain of a 115-year-old woman”. Neurobiol Aging. 2008;29:1133–6.

    Article  Google Scholar 

  • Del Tredici K, Rüb U, De Vos RA, Bohl JR, BraakH. Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol. 2002;61:413–26.

    Article  Google Scholar 

  • Diack AB, Ritchie DL, Peden AH, Brown D, Boyle A, Morabito L, Maclennan D, Burgoyne P, Jansen C, Knight RS, Piccardo P, Ironside JW, Manson JC. Variably protease-sensitive prionopathy, a unique prion variant with inefficient transmission properties. Emerg Infect Dis. 2014;20:1969–79.

    Article  CAS  Google Scholar 

  • Dickson DW. Pick’s disease: a modern approach. Brain Pathol. 1998;8:339–54.

    Article  CAS  Google Scholar 

  • do Amaral MJ, Cordeiro Y. Intrinsic disorder and phase transitions: pieces in the puzzling role of the prion protein in health and disease. Prog Mol Biol Transl Sci. 2021;183:1–43.

    Article  Google Scholar 

  • Dohler F, Sepulveda-Falla D, Krasemann S, Altmeppen H, Schlüter H, Hildebrand D, Zerr I, Matschke J, Glatzel M. High molecular mass assemblies of amyloid-beta oligomers bind prion protein in patients with Alzheimer’s disease. Brain. 2014;137:873–86.

    Article  Google Scholar 

  • Drisaldi B, Stewart RS, Adles C, Stewart LR, Quaglio E, Biasini E, Fioriti L, Chiesa R, Harris DA. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J Biol Chem. 2003;278:21732–43.

    Article  CAS  Google Scholar 

  • Elbaum-Garfinkle S. Matter over mind: liquid phase separation and neurodegeneration. J Biol Chem. 2019;294:7160–8.

    Article  CAS  Google Scholar 

  • Elfrink K, Ollesch J, Stöhr J, Willbold D, Riesner D, Gerwert K. Structural changes of membrane-anchored native PrP(C). Proc Natl Acad Sci U S A. 2008;105:10815–9.

    Article  CAS  Google Scholar 

  • Esiri MM, Carter J, Ironside JW. Prion protein immunoreactivity in brain samples from an unselected autopsy population: findings in 200 consecutive cases. Neuropathol Appl Neurobiol. 2000;26:273–84.

    Article  CAS  Google Scholar 

  • Faris R, Moore RA, Ward A, Race B, Dorward DW, Hollister JR, Fischer ER, Priola SA. Cellular prion protein is present in mitochondria of healthy mice. Sci Rep. 2017;7:41556.

    Article  CAS  Google Scholar 

  • Fernandez-Funez P, Zhang Y, Casas-Tinto S, Xiao X, Zou WQ, Rincon-Limas DE. Sequence-dependent prion protein misfolding and neurotoxicity. J Biol Chem. 2010;285:36897–908.

    Article  CAS  Google Scholar 

  • Ferrer I, Blanco R, Carmona M, Puig B, Ribera R, Rey MJ, et al. Prion protein expression in senile plaques in Alzheimer’s disease. Acta Neuropathol. 2001;101:49–56.

    Article  CAS  Google Scholar 

  • Forno LS. Concentric hyalin intraneuronal inclusions of Lewy type in the brains of elderly persons (50 incidental cases): relationship to parkinsonism. J Am Geriatr Soc. 1969;17:557–75.

    Article  CAS  Google Scholar 

  • Ford MJ, Burton LJ, Li H, Graham CH, Frobert Y, Grassi J, et al. A marked disparity between the expression of prion protein and its message by neurons of the CNS. Neuroscience. 2002;111:533–51.

    Google Scholar 

  • Freir DB, Nicoll AJ, Klyubin I, Panico S, Mc Donald JM, Risse E, Asante EA, Farrow MA, Sessions RB, Saibil HR, Clarke AR, Rowan MJ, Walsh DM, Collinge J. Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat Commun. 2011;2:336–40.

    Article  Google Scholar 

  • Gambetti P, Dong Z, Yuan J, Xiao X, Zheng M, Alshekhlee A, et al. A novel human disease with abnormal prion protein sensitive to protease. Ann Neurol. 2008;63:697–708.

    Article  CAS  Google Scholar 

  • Gambetti P, Puoti G, Zou WQ. Variably protease-sensitive prionopathy: a novel disease of the prion protein. J Mol Neurosci. 2011a;45:422–4.

    Article  CAS  Google Scholar 

  • Gambetti P, Zou WQ, Torres JM, Soto C, Notari S, Espinosa JC, et al. Variably protease-sensitive prionopathy: transmissibility and PMCA studies. Prion. 2011b;5:14.

    Google Scholar 

  • Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science. 2015;349:1255555.

    Article  Google Scholar 

  • Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A, Benzinger T, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer’s disease: a longitudinal study. Lancet Neurol. 2018;17:241–50.

    Article  Google Scholar 

  • Grenier C, Bissonnette C, Volkov L, Roucou X. Molecular morphology and toxicity of cytoplasmic prion protein aggregates in neuronal and non-neuronal cells. J Neurochem. 2006;97:1456–66.

    Article  CAS  Google Scholar 

  • Griffith JS. Self-replication and scrapie. Nature. 1967;215:1043–4.

    Article  CAS  Google Scholar 

  • Guo JL, Lee VM. Neurofibrillary tangle-like tau pathology induced by synthetic tau fibrils in primary neurons over-expressing mutant tau. FEBS Lett. 2013;587:717–23.

    Article  CAS  Google Scholar 

  • Hall D, Edskes H. Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection. J Mol Biol. 2004;336:775–86.

    Article  CAS  Google Scholar 

  • Hansson O. Biomarkers for neurodegenerative diseases. Nat Med. 2021;27:954–63.

    Article  CAS  Google Scholar 

  • Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci. 2013;33:1024–37.

    Article  CAS  Google Scholar 

  • Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P, Verhey FR, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313(19):1924–38.

    Article  Google Scholar 

  • Jarrett JT, Lansbury PT Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell. 1993;73:1055–8.

    Article  CAS  Google Scholar 

  • Jeffrey M, Scholes SF, Martin S, McGovern G, Sisó S, González L. Increased immunohistochemical labelling for prion protein occurs in diverse neurological disorders of sheep: relevance for normal cellular PrP function. J Comp Pathol. 2012;147:46–54.

    Article  CAS  Google Scholar 

  • Josephs KA, Murray ME, Tosakulwong N, Whitwell JL, Knopman DS, Machulda MM, et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol. 2017;133:705–15.

    Article  CAS  Google Scholar 

  • König AS, Rösener NS, Gremer L, Tusche M, Flender D, Reinartz E, Hoyer W, Neudecker P, Willbold D, Heise H. Structural details of amyloid beta oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy. J Biol Chem. 2021;296:100499.

    Article  Google Scholar 

  • Kostylev MA, Tuttle MD, Lee S, Klein LE, Takahashi H, Cox TO, et al. Liquid and hydrogel phases of PrPC linked to conformation shifts and triggered by Alzheimer’s amyloid-β oligomers. Mol Cell. 2018;72:426–443.e12.

    Article  Google Scholar 

  • Kovachev PS, Gomes MPB, Cordeiro Y, Ferreira NC, Valadão LPF, Ascari LM, Rangel LP, Silva JL, Sanyal S. RNA modulates aggregation of the recombinant mammalian prion protein by direct interaction. Sci Rep. 2019;9:12406.

    Article  Google Scholar 

  • Kovacs GG, Zerbi P, Voigtländer T, Strohschneider M, Trabattoni G, Hainfellner JA, et al. The prion protein in human neurodegenerative disorders. Neurosci Lett. 2002;329:269–72.

    Article  CAS  Google Scholar 

  • Krasemann S, Jürgens T, Bodemer W. Generation of monoclonal antibodies against prion proteins with an unconventional nucleic acid-based immunization strategy. J Biotechnol. 1999;73:119–29.

    Article  CAS  Google Scholar 

  • Kuczius T, Groschup MH. Cellular prion proteins in humans and cattle but not sheep are characterized by a low-solubility phenotype. Comp Immunol Microbiol Infect Dis. 2013;36:599–605.

    Article  Google Scholar 

  • Kuczius T, Karch H, Groschup MH. Differential solubility of prions is associated in manifold phenotypes. Mol Cell Neurosci. 2009;42:226–33.

    Article  CAS  Google Scholar 

  • Kuczius T, Wohlers J, Karch H, Groschup MH. Subtyping of human cellular prion proteins and their differential solubility. Exp Neurol. 2011;227:188–94.

    Article  CAS  Google Scholar 

  • Kudo W, Lee HP, Zou WQ, Wang X, Perry G, Zhu X, Smith MA, Petersen RB, Lee HG. Cellular prion protein is essential oligomeric amyloid-β induced neuronal cell death. Hum Mol Genet. 2012;21(5):1138–44.

    Article  CAS  Google Scholar 

  • Kuwata K, Li H, Yamada H, Legname G, Prusiner SB, Akasaka K, et al. Locally disordered conformer of the hamster prion protein: a crucial intermediate to PrPSc? Biochemistry. 2002;41:12277–83.

    Article  CAS  Google Scholar 

  • Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, Aguzzi A, Lesné SE. The complex PrP(c)-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J Neurosci. 2012;32:16857–71.

    Article  CAS  Google Scholar 

  • Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep. 2012;2:700.

    Article  Google Scholar 

  • Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 2009;457:1128–32.

    Article  Google Scholar 

  • Lehmann S, Harris DA. Two mutant prion proteins expressed in cultured cells acquire biochemical properties reminiscent of the scrapie isoform. Proc Natl Acad Sci U S A. 1996;93:5610–4.

    Article  CAS  Google Scholar 

  • Lehmann S, Harris DA. Blockade of glycosylation promotes acquisition of scrapie-like properties by the prion protein in cultured cells. J Biol Chem. 1997;272:21479–87.

    Article  CAS  Google Scholar 

  • Li C, Yu S, Nakamura F, Yin S, Xu J, Petrolla AA, et al. Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J Clin Invest. 2009;119:2725–36.

    Google Scholar 

  • Liang J, Wang JB, Pan YL, Wang J, Liu LL, Guo XY, et al. High frequency occurrence of 1-OPRD variant of PRNP gene in gastric cancer cell lines and Chinese population with gastric cancer. Cell Biol Int. 2006;30:920–3.

    Google Scholar 

  • Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev. 2008;88:673–728.

    Article  CAS  Google Scholar 

  • Lu BY, Chang JY. Isolation and characterization of a polymerized prion protein. Biochem J. 2002;364:81–7.

    Article  CAS  Google Scholar 

  • Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012a;338:949–53.

    Article  CAS  Google Scholar 

  • Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Experi Med. 2012b;209:975–86.

    Article  CAS  Google Scholar 

  • Ma J, Lindquist S. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci U S A. 2001;98:14955–60.

    Article  CAS  Google Scholar 

  • Ma J, Lindquist S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science. 2002;298:1785–8.

    Article  CAS  Google Scholar 

  • Makarava N, Baskakov IV. Purification and fibrillation of full-length recombinant PrP. Methods Mol Biol. 2012;849:33–52.

    Google Scholar 

  • Málaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, et al. Regulation of embryonic cell adhesion by the prion protein. PLoS Biol. 2009;7:e55.

    Google Scholar 

  • Martins SM, Chapeaurouge A, Ferreira ST. Folding intermediates of the prion protein stabilized by hydrostatic pressure and low temperature. J Biol Chem. 2003;278:50449–55.

    Article  CAS  Google Scholar 

  • Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DM, Hasegawa M. Prion-like spreading of pathological α-synuclein in brain. Brain. 2013;136:1128–38.

    Article  Google Scholar 

  • Matos CO, Passos YM, do Amaral MJ, Macedo B, Tempone MH, Bezerra O, et al. Liquid-liquid phase separation and fibrillation of the prion protein modulated by a high-affinity DNA aptamer. FASEB J. 2020;34:365–85.

    Article  CAS  Google Scholar 

  • McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A, Rennison KA, et al. Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol. 2004;165:227–35.

    Google Scholar 

  • Meslin F, Hamaï A, Gao P, Jalil A, Cahuzac N, Chouaib S, et al. Silencing of prion protein sensitizes breast adriamycin-resistant carcinoma cells to TRAIL-mediated cell death. Cancer Res. 2007;67:10910–9.

    Google Scholar 

  • Meyer RK, McKinley MP, Bowman KA, Braunfeld MB, Barry RA, Prusiner SB. Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci U S A. 1986;83:2310–4.

    Article  CAS  Google Scholar 

  • Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science. 2006;313:1781–4.

    Article  CAS  Google Scholar 

  • Mikolaenko I, Pletnikova O, Kawas CH, O’Brien R, Resnick SM, Crain B, Troncoso JC. Alpha-synuclein lesions in normal aging, Parkinson disease, and Alzheimer disease: evidence from the Baltimore longitudinal study of aging (BLSA). J Neuropathol Exp Neurol. 2005;64:156–62.

    Article  CAS  Google Scholar 

  • Mironov A Jr, Latawiec D, Wille H, Bouzamondo-Bernstein E, Legname G, Williamson RA, Burton D, DeArmond SJ, Prusiner SB, Peters PJ. Cytosolic prion protein in neurons. J Neurosci. 2003;23:7183–93.

    Article  CAS  Google Scholar 

  • Mitsios N, Saka M, Krupinski J, Pennucci R, Sanfeliu C, Miguel Turu M, et al. Cellular prion protein is increased in the plasma and periinfarcted brain tissue after acute stroke. J Neurosci Res. 2007;85:602–11.

    Google Scholar 

  • Morales R, Estrada LD, Diaz-Espinoza R, Morales-Scheihing D, Jara MC, Castilla J, et al. Molecular cross talk between misfolded proteins in animal models of Alzheimer’s and prion diseases. J Neurosci. 2010;30:4528–35.

    Article  CAS  Google Scholar 

  • Morillas M, Vanik DL, Surewicz WK. On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein. Biochemistry. 2001;40:6982–7.

    Article  CAS  Google Scholar 

  • Moudjou M, Treguer E, Rezaei H, Sabuncu E, Neuendorf E, Groschup MH, Grosclaude J, Laude H. Glycan-controlled epitopes of prion protein include a major determinant of susceptibility to sheep scrapie. J Virol. 2004;78:11449.

    Article  CAS  Google Scholar 

  • Münch C, O’Brien J, Bertolotti A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci U S A. 2011;108:3548–53.

    Article  Google Scholar 

  • Nicholson EM, Mo H, Prusiner SB, Cohen FE, Marqusee S. Differences between the prion protein and its homolog Doppel: a partially structured state with implications for scrapie formation. J Mol Biol. 2002;316:807–15.

    Article  CAS  Google Scholar 

  • Nitrini R, Rosemberg S, Passos-Bueno MR, da Silva LS, Iughetti P, Papadopoulos M, Carrilho PM, Caramelli P, Albrecht S, Zatz M, LeBlanc A. Familial spongiform encephalopathy associated with a novel prion protein gene mutation. Ann Neurol. 1997;42:138–46.

    Article  CAS  Google Scholar 

  • Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, Obi T, Yoshida M, Murayama S, Mann DM, Akiyama H, Hasegawa M. Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell Rep. 2013;4:124–34.

    Article  CAS  Google Scholar 

  • Nonno R, Notari S, Di Bari MA, Cali I, Pirisinu L, d’Agostino C, Cracco L, Kofskey D, Vanni I, Lavrich J, Parchi P, Agrimi U, Gambetti P. Variable protease-sensitive Prionopathy transmission to Bank voles. Emerg Infect Dis. 2019;25:73–81.

    Article  CAS  Google Scholar 

  • Notari S, Xiao X, Espinosa JC, Cohen Y, Qing L, Aguilar-Calvo P, Kofskey D, Cali I, Cracco L, Kong Q, Torres JM, Zou W, Gambetti P. Transmission characteristics of variably protease-sensitive prionopathy. Emerg Infect Dis. 2014;20:2006–14.

    Article  CAS  Google Scholar 

  • Notari S, Appleby BS, Gambetti P. Variably protease-sensitive prionopathy. Handb Clin Neurol. 2018;153:175–90.

    Article  Google Scholar 

  • Nunziante M, Ackermann K, Dietrich K, Wolf H, Gädtke L, Gilch S, Vorberg I, Groschup M, Schätzl HM. Proteasomal dysfunction and endoplasmic reticulum stress enhance trafficking of prion protein aggregates through the secretory pathway and increase accumulation of pathologic prion protein. J Biol Chem. 2011;286:33942–53.

    Article  CAS  Google Scholar 

  • Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993;90:10962–6.

    Article  CAS  Google Scholar 

  • Papassotiropoulos A, Wollmer MA, Aguzzi A, Hock C, Nitsch RM, de Quervain DJ. The prion gene is associated with human long-term memory. Hum Mol Genet. 2005;14:2241–6.

    Article  CAS  Google Scholar 

  • Parchi P, Castellani R, Capellari S, Ghetti B, Young K, Chen SG, et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt–Jakob disease. Ann Neurol. 1996;39:767–78.

    Article  CAS  Google Scholar 

  • Pergami P, Poloni TE, Corato M, Camisa B, Ceroni M. Prions and prion diseases. Funct Neurol. 1999;14:241–52.

    CAS  Google Scholar 

  • Petit CS, Besnier L, Morel E, Rousset M, Thenet S. Roles of the cellular prion protein in the regulation of cell-cell junctions and barrier function. Tissue Barriers. 2013;1:e24377.

    Article  Google Scholar 

  • Prusiner SB. Molecular biology of prion diseases. Science. 1991;252:1515–22.

    Article  CAS  Google Scholar 

  • Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet. 2013;47:601–23.

    Article  CAS  Google Scholar 

  • Puckett C, Concannon P, Casey C, Hood L. Genomic structure of the human prion protein gene. Am J Hum Genet. 1991;49:320–9.

    CAS  Google Scholar 

  • Re F, Sesana S, Barbiroli A, Bonomi F, Cazzaniga E, Lonati E, Bulbarelli A, Masserini M. Prion protein structure is affected by pH-dependent interaction with membranes: a study in a model system. FEBS Lett. 2008;582:215–20.

    Article  CAS  Google Scholar 

  • Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol. 2009;11:219–25.

    Article  CAS  Google Scholar 

  • Requena JR. The protean prion protein. PLoS Biol. 2020;18:e3000754.

    Google Scholar 

  • Rezaei H, Eghiaian F, Perez J, Doublet B, Choiset Y, Haertle T, Grosclaude J. Sequential generation of two structurally distinct ovine prion protein soluble oligomers displaying different biochemical reactivities. J Mol Biol. 2005;347:665–79.

    Article  CAS  Google Scholar 

  • Riek R, Hornemann S, Wider G, Glockshuber R, Wüthrich K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett. 1997;413:282–8.

    Article  CAS  Google Scholar 

  • Rogers M, Taraboulos A, Scott M, Groth D, Prusiner SB. Intracellular accumulation of the cellular prion protein after mutagenesis of its Asn-linked glycosylation sites. Glycobiology. 1990;1:101–9.

    Article  CAS  Google Scholar 

  • Ross ED, Minton A, Wickner RB. Prion domains: sequences, structures and interactions. Nat Cell Biol. 2005;7:1039–44.

    Article  CAS  Google Scholar 

  • Safar J, Wille H, Itri V, Groth D, Serban H, Torchia M, et al. Eight prion strains have PrP(Sc) molecules with different conformations. Nat Med. 1998;4:1157–65.

    Article  CAS  Google Scholar 

  • Safar JG, DeArmond SJ, Kociuba K, Deering C, Didorenko S, Bouzamondo-Bernstein E, et al. Prion clearance in bigenic mice. J Gen Virol. 2005;86:2913–23.

    Article  CAS  Google Scholar 

  • Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C, Medical Research Council Cognitive Function and Ageing Study. Age, neuropathology, and dementia. N Engl J Med. 2009;360:2302–9.

    Article  CAS  Google Scholar 

  • Schwarze-Eicker K, Keyvani K, Görtz N, Westaway D, Sachser N, Paulus W. Prion protein (PrPc) promotes beta-amyloid plaque formation. Neurobiol Aging. 2005;26:1177–82.

    Article  CAS  Google Scholar 

  • Shorter J, Lindquist S. Prions as adaptive conduits of memory and inheritance. Nat Rev Genet. 2005;6:435–50.

    Article  CAS  Google Scholar 

  • Si K, Lindquist S, Kandel ER. A neuronal isoform of the aplysia CPEB has prion-like properties. Cell. 2003;115:879–91.

    Article  CAS  Google Scholar 

  • Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell. 2010;140:421–35.

    Article  CAS  Google Scholar 

  • Singh N, Zanusso G, Chen SG, Fujioka H, Richardson S, Gambetti P, Petersen RB. Prion protein aggregation reverted by low temperature in transfected cells carrying a prion protein gene mutation. J Biol Chem. 1997;272:28461–70.

    Article  CAS  Google Scholar 

  • Sokolowski F, Modler AJ, Masuch R, Zirwer D, Baier M, Lutsch G, et al. Formation of critical oligomers is a key event during conformational transition of recombinant Syrian hamster prion protein. J Biol Chem. 2003;278:40481–92.

    Article  CAS  Google Scholar 

  • Spagnolli G, Rigoli M, Novi Inverardi G, Codeseira YB, Biasini E, Requena JR. Modeling PrPSc Generation Through Deformed Templating. Front Bioeng Biotechnol. 2020;8:590501.

    Google Scholar 

  • Stöhr J, Watts JC, Mensinger ZL, et al. Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions. Proc Natl Acad Sci U S A. 2012;109(27):11025–30.

    Article  Google Scholar 

  • Strom A, Wang GS, Reimer R, Finegood DT, Scott FW. Pronounced cytosolic aggregation of cellular prion protein in pancreatic beta-cells in response to hyperglycemia. Lab Investig. 2007;87:139–49.

    Article  CAS  Google Scholar 

  • Sudhakaran IP, Ramaswami M. Long-term memory consolidation: the role of RNA-binding proteins with prion-like domains. RNA Biol. 2017;14:568–86.

    Article  Google Scholar 

  • Tagliavini F, Prelli F, Ghiso J, Bugiani O, Serban D, Prusiner SB, Farlow MR, Ghetti B, Frangione B. Amyloid protein of Gerstmann-Sträussler-Scheinker disease (Indiana kindred) is an 11 kd fragment of prion protein with an N-terminal glycine at codon 58. EMBO J. 1991;10:513–9.

    Article  CAS  Google Scholar 

  • Tanaka M, Chien P, Yonekura K, Weissman JS. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell. 2005;121:49–62.

    Article  CAS  Google Scholar 

  • Tompa P, Friedrich P. Prion proteins as memory molecules: an hypothesis. Neuroscience. 1998;86:1037–43.

    CAS  Google Scholar 

  • Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM. Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci. 2012;15:1227–35.

    Article  CAS  Google Scholar 

  • Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2013;12(4):357–67.

    Article  CAS  Google Scholar 

  • Wadsworth JD, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, Collinge J. Tissue distribution of protease resistant prion protein in variant Creutzfeldt–Jakob disease using a highly sensitive immunoblotting assay. Lancet. 2001;358:171–80.

    Article  CAS  Google Scholar 

  • Wang F, Yang F, Hu Y, Wang X, Wang X, Jin C, Ma J. Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions. Biochemistry. 2007;46:7045–53.

    Article  CAS  Google Scholar 

  • Wang Z, Yuan J, Shen P, Abskharon R, Lang Y, Dang J, Adornato A, Xu L, Chen J, Feng J, Moudjou M, Kitamoto T, Lee HG, Kim YS, Langeveld J, Appleby B, Ma J, Kong Q, Petersen RB, Zou WQ, Cui L. In vitro seeding activity of Glycoform-deficient prions from variably protease-sensitive Prionopathy and familial CJD associated with PrP(V180I) mutation. Mol Neurobiol. 2019;56:5456–69.

    Article  CAS  Google Scholar 

  • Ward A, Hollister JR, Choi YP, Race B, Williams K, Shoup DW, Moore RA, Priola SA. Altered distribution, aggregation, and protease resistance of cellular prion protein following intracranial inoculation. PLoS One. 2019;14:e0219457.

    Article  CAS  Google Scholar 

  • Weissmann C. The state of the prion. Nat Rev Microbiol. 2004;2:861–71.

    Article  CAS  Google Scholar 

  • Westaway D, DeArmond SJ, Cayetano-Canlas J, Groth D, Foster D, Yang SL, et al. Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell. 1994;76:117–29.

    Article  CAS  Google Scholar 

  • Westaway D, Alier K, Vergote D, MacTavish D, Mercer R, Fu W, et al. Prion proteins and the Alzheimer disease Aβ amyloid cascade. Prion. 2011;5:1–2.

    Google Scholar 

  • Xiao X, Yuan J, Zou WQ. Isolation of soluble and insoluble PrP oligomers in the normal human brain. J Vis Exp. 2012;68:e3788. https://doi.org/10.3791/3788.

    Article  CAS  Google Scholar 

  • Yedidia Y, Horonchik L, Tzaban S, Yanai A, Taraboulos A. Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein. EMBO J. 2001;20:5383–91.

    Article  CAS  Google Scholar 

  • Yuan J, Xiao X, McGeehan J, Dong Z, Cali I, Fujioka H, et al. Insoluble aggregates and protease-resistant conformers of prion protein in uninfected human brains. J Biol Chem. 2006;281:34848–58.

    Article  CAS  Google Scholar 

  • Yuan J, Dong Z, Guo JP, McGeehan J, Xiao X, Wang J, et al. Accessibility of a critical prion protein region involved in strain recognition and its implications for the early detection of prions. Cell Mol Life Sci. 2008;65:631–43.

    Article  CAS  Google Scholar 

  • Zahn R, Liu A, Lührs T, Riek R, von Schroetter C, López García F, et al. NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A. 2000;97:145–50.

    Article  CAS  Google Scholar 

  • Zaidi SI, Richardson SL, Capellari S, Song L, Smith MA, Ghetti B, Sy MS, Gambetti P, Petersen RB. Characterization of the F198S prion protein mutation: enhanced glycosylation and defective refolding. J Alzheimers Dis. 2005;7:159–71. discussion 173–180

    Article  CAS  Google Scholar 

  • Zhang H, Stockel J, Mehlhorn I, Groth D, Baldwin MA, Prusiner SB, et al. Physical studies of conformational plasticity in a recombinant prion protein. Biochemistry. 1997;36:3543–53.

    Article  CAS  Google Scholar 

  • Zhang W, Xiao X, Ding M, Yuan J, Foutz A, Moudjou M, Kitamoto T, Langeveld JPM, Cui L, Zou WQ. Further characterization of Glycoform-selective prions of variably protease-sensitive Prionopathy. Pathogens. 2021;10:513.

    Article  CAS  Google Scholar 

  • Zou WQ. Transmissible spongiform encephalopathy and beyond (E-letter). Science; 2007. https://www.science.org/doi/10.1126/science.1114168. Accessed 12 Mar 2022

    Google Scholar 

  • Zou WQ. Chameleon-like prion protein and human cognition. Curr Top Biochem Res. 2010;12:1–8.

    CAS  Google Scholar 

  • Zou WQ, Cashman NR. Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form. J Biol Chem. 2002;277:43942–7.

    Article  CAS  Google Scholar 

  • Zou WQ, Gambetti P. Prion: the chameleon protein. Cell Mol Life Sci. 2007;64:3266–70.

    Article  CAS  Google Scholar 

  • Zou WQ, Zheng J, Gray DM, Gambetti P, Chen SG. Antibody to DNA detects scrapie but not normal prion protein. Proc Natl Acad Sci U S A. 2004;101:1380–5.

    Article  CAS  Google Scholar 

  • Zou WQ, Langeveld J, Xiao X, Chen S, McGeer PL, Yuan J, et al. PrP conformational transitions alter species preference of a PrP-specific antibody. J Biol Chem. 2010a;285:13874–84.

    Article  CAS  Google Scholar 

  • Zou WQ, Puoti G, Xiao X, Yuan J, Qing L, Cali I, et al. Variably protease-sensitive prionopathy: a new sporadic disease of the prion protein. Ann Neurol. 2010b;68:162–72.

    Article  CAS  Google Scholar 

  • Zou RS, Fujioka H, Guo JP, Xiao X, Shimoji M, Kong C, Chen C, Tasnadi M, Voma C, Yuan J, Moudjou M, Laude H, Petersen RB, Zou WQ. Characterization of spontaneously generated prion-like conformers in cultured cells. Aging. 2011a;3:968–84.

    Article  CAS  Google Scholar 

  • Zou WQ, Xiao X, Yuan J, Puoti G, Fujioka H, Wang X, et al. Amyloid-{beta}42 interacts mainly with insoluble prion protein in the Alzheimer brain. J Biol Chem. 2011b;286:15095–105.

    Article  CAS  Google Scholar 

  • Zou WQ, Zhou X, Yuan J, Xiao X. Insoluble cellular prion protein and its association with prion and Alzheimer diseases. Prion. 2011c;5:172–8.

    Article  CAS  Google Scholar 

  • Zou WQ, Gambetti P, Xiao X, Yuan J, Langeveld J, Pirisinu L. Prions in variably protease-sensitive prionopathy: an update. Pathogens. 2013;2:457–71.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) grant NS112010, NIH NS109532, the BAND grant jointly funded by the Alzheimer’s Association, Alzheimer’s Research, UK, Michael J. Fox Foundation for Parkinson’s Research (MJFF), and Weston Brain Institute, α-synuclein seed amplification grant supported by MJFF, and the CJD Foundation grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Quan Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zou, WQ. (2023). Insoluble Cellular Prion Protein and Other Neurodegeneration-Related Protein Aggregates in the Brain of Asymptomatic Individuals. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-031-20565-1_4

Download citation

Publish with us

Policies and ethics