Skip to main content

Advertisement

Log in

Majority of TcRβ+ T-lymphocytes located in thymus and midgut of the bony fish, Dicentrarchus labrax (L.)

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Real-time polymerase chain reaction (PCR) and in situ hybridization analyses were performed to investigate the occurrence and distribution of T-lymphocytes expressing TcRβ in intestine and lymphoid tissues of the bony fish, Dicentrarchus labrax (sea bass). Immunohistochemistry with the monoclonal antibody DLT15 (pan-T-cell marker) was carried out to compare the cytology, distribution and number of T-cells and TcRβ+ cells in the various sampled lymphoid organs. The highest TcRβ expression was revealed by real-time PCR in the thymus, with high levels also being found in the gut. In the thymus, DLT15+ and TcRβ+ cell populations were concentrated in the cortex and TcRβ+ cells were notably reactive at the cortical-medullary border, suggesting a specialized role of this region in thymocyte selection. The density of DLT15+ T-cells increased from the anterior to posterior intestine, whereas TcRβ+ lymphocytes were more numerous in the middle intestine compared with other segments. The existence, in fish thymus, of a medulla and a cortex comparable with those of mammals is revealed by this study. The concentration of TcRβ+ cells in the sea bass midgut also strongly suggests a special role of this intestinal segment in antigen-specific cellular immunity. The large population of TcRβ-/DLT15+ T-cells in the posterior gut can probably be ascribed to the TcRγδ phenotype fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abelli L, Picchietti S, Romano N, Mastrolia L, Scapigliati G (1996) Immunocytochemical detection of thymocyte antigenic determinants in developing lymphoid organs of sea bass Dicentrarchus labrax (L.). Fish Shellfish Immunol 6:493–505

    Article  Google Scholar 

  • Abelli L, Picchietti S, Romano N, Mastrolia L, Scapigliati G (1997) Immunohistochemistry of gut-associated lymphoid tissue of the sea bass Dicentrarchus labrax (L.). Fish Shellfish Immunol 7:235–245

    Article  Google Scholar 

  • Abelli L, Baldassini MR, Meschini R, Mastrolia L (1998) Apoptosis of thymocytes in developing sea bass Dicentrarchus labrax (L.). Fish Shellfish Immunol 8:13–24

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers E, Lipman DJ (1990) Best local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Aviles-Trigueros M, Quesada JA (1995) Presence of interdigitate cells in thymus of the sea bass Dicentrarchus labrax L. (Teleost). J Morphol 224:199–203

    Article  Google Scholar 

  • Bernard D, Six A, Rigottier-Gois L, Messiaen S, Chilmonczyk S, Quillet E, Boudinot P, Benmansour A (2006) Phenotypic and functional similarity of gut intraepithelial and systemic T cells in a teleost fish. J Immunol 176:3942–3949

    PubMed  CAS  Google Scholar 

  • Danilova N, Hohman VS, Sacher F, Ota T, Willett CE, Steiner LA (2004) T cells and the thymus in developing zebrafish. Dev Comp Immunol 28:755–767

    Article  PubMed  CAS  Google Scholar 

  • Ellis AE (1977) Ontogeny of the immune response in Salmo salar. Histogenesis of the lymphoid organs and appearance of membrane immunoglobulin and mixed leucocyte reactivity. In: Solomon JB, Horton JD (eds) Developmental immunobiology. Elsevier/North Holland Biomedical, Amsterdam, pp 225–231

    Google Scholar 

  • Fisher U, Dijkstra JM, Köllner B, Kiryu I, Koppang EO, Hordovic I, Sawamoto Y, Ototake M (2005) The ontogeny of MHC class I expression in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 18:49–60

    Article  Google Scholar 

  • Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402:255–261

    Article  PubMed  CAS  Google Scholar 

  • Huttenhuis HBT, Romano N, Oosterhoud CN van, Taverne-Thiele AJ, Mastrolia L, Van Muiswinkel WB, Rombout JHWH (2005) The ontogeny of mucosal immune cells in common carp (Cyprinus carpio L.). Anat Embryol 211:19–29

    Article  Google Scholar 

  • Kurosawa Y, Hashimoto K (1997) How did primordial T cell receptor and MHC molecules function initially? Immunol Cell Biol 75:193–196

    Article  PubMed  CAS  Google Scholar 

  • Lefrançois L, Puddington L (1995) Extrathymic intestinal T-cell development: “virtual reality”? Immunol Today 16:16–21

    Article  PubMed  Google Scholar 

  • Lovy J, Wright GM, Speare DJ (2006) Morphological presentation of a dendritic-like cell within the gills of chinook salmon infected with Loma salmonae. Dev Comp Immunol 30:259–263

    Article  PubMed  CAS  Google Scholar 

  • McMillan ND, Secombes C (1997) Isolation of rainbow trout (Oncorhynchus mykiss) intestinal intraepithelial lymphocytes (IEL) and measurement of their cytotoxic activity. Fish Shellfish Immunol 7:527–541

    Article  Google Scholar 

  • Miracle AL, Anderson MK, Litman RT, Walsh CJ, Luer CA, Rothenberg EV, Litman GW (2001) Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int Immunol 13:567–580

    Article  PubMed  CAS  Google Scholar 

  • Nam Bo-H, Hirono I, Aoki T (2003) The four TcR genes of teleost fish: the cDNA and genomic DNA analysis of Japanese flounder (Paralichtys olivaceus) TcR α-, β-, γ-, and δ-chains. J Immunol 170:3081–3090

    PubMed  CAS  Google Scholar 

  • Parham P (2000) The immune system-current trends. Gardaland, New York London

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparision. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  Google Scholar 

  • Picchietti S, Terribili FR, Mastrolia L, Scapigliati G, Abelli L (1997) Expression of lymphocyte antigenic determinants in developing gut-associated lymphoid tissue of the sea bass Dicentrarchus labrax (L.). Anat Embryol 196:457–463

    Article  PubMed  CAS  Google Scholar 

  • Quiniou SM-A, Wilson M, Bengtèn E, Waldbieser GC, Clem LW, Miller NW (2005) MHC RFLP analyses in channel catfish full-sibling families: identification of the role of MHC molecules in spontaneous allogenic cytotoxic responses. Dev Comp Immunol 29:457–467

    Article  PubMed  CAS  Google Scholar 

  • Ritter MA, Crispe IN (1992) The thymus. In: Rickwood D, Male D (eds) In focus. Oxford University Press, Oxford, pp 1–85

    Google Scholar 

  • Romano N, Abelli L, Mastrolia L, Scapigliati G (1997a) Immunocytochemical detection and cytomorphology of lymphocyte subpopulations in a teleost fish Dicentrarchus labrax (L). Cell Tissue Res 289:163–171

    Article  PubMed  CAS  Google Scholar 

  • Romano N, Baldassini MR, Terribili FR, Abelli L, Mastrolia L, Mazzini M (1997b) Histological observations on lymphoid organs of the Antarctic fish Trematomus bernacchii (Teleostei: Nototheniidae). Polar Biol 18:358–362

    Article  Google Scholar 

  • Romano N, Picchietti S, Taverne-Thiele JJ, Abelli L, Mastrolia L, Verburg-van Kemenade BML, Rombout JHWM (1998) Distribution of macrophages during fish development: an immunohistochemical study in carp (Cyprinus carpio,(L.). Anat Embryol 198:31–41

    Article  PubMed  CAS  Google Scholar 

  • Romano N, Fanelli M, Del Papa GM, Scapigliati G, Mastrolia L (1999a) Histological and cytologycal studies on the developing thymus of sharpsnout seabream, Diplodus puntazzo. J Anat 194:39–50

    Article  PubMed  Google Scholar 

  • Romano N, Taverne-Thiele, JJ, Fanelli M, Baldassini MR, Abelli L, Mastrolia L, Van Muiswinkel WB, Rombout JHMW (1999b) Ontogeny of the thymus in a teleost, Cyprinus carpio L.: developing thymocytes in the epithelial microenvironment. Dev Comp Immunol 23:123–137

    Article  PubMed  CAS  Google Scholar 

  • Romano N, Baldassini MR, Buonocore F, Picchietti S, Mastrolia L, Abelli L (2005) In vivo allograft rejection in a bony fish Dicentrarchus labrax (L.): characterisation of effector lymphocytes. Cell Tissue Res 321:353–363

    Article  PubMed  CAS  Google Scholar 

  • Rombout JH, Taverne-Thiele AJ, Villena MI (1993) The gut-associated lymphoid tissue (GALT) of carp (Cyprinus carpio L.): an immunocytochemical analysis. Dev Comp Immunol 17:55–66

    Article  PubMed  CAS  Google Scholar 

  • Rumfelt LL, McKinney EC, Taylor E, Flajmik MF (2002) The development of primary and secondary lymphoid tissues in nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand J Immunol 56:130–148

    Article  PubMed  CAS  Google Scholar 

  • Scapigliati G, Mazzini M, Mastrolia L, Romano N, Abelli L (1995) Production and characterization of a monoclonal antibody against the thymocytes of the sea bass Dicentrarchus labrax (L.) (Teleostea, Percicthydae). Fish Shellfish Immunology 5:393–405

    Article  Google Scholar 

  • Scapigliati G, Romano N, Picchietti S, Mazzini M, Mastrolia L, Scalia D, Abelli L (1996) Monoclonal antibodies against sea bass Dicentrarchus labrax (L) immunoglobulins: immunolocalisation of immunoglobulin-bearing cells and applicability in immunoassays. Fish Shellfish Immunol 6:383–401

    Article  Google Scholar 

  • Scapigliati G, Romano N, Abelli L (1999) Monoclonal antibodies in teleost fish immunology: identification, ontogeny and activity of T- and B-lymphocytes. Aquaculture 172:3–28

    Article  CAS  Google Scholar 

  • Scapigliati G, Romano N, Abelli L, Meloni S, Ficca AG, Buonocore F, Secombes CJ (2000) Immunopurification of T-cells from sea bass Dicentrarchus labrax (L.). Fish Shellfish Immunol 10:329–341

    Article  PubMed  CAS  Google Scholar 

  • Sprent J, Webb R (1995) Intrathymic and extrathymic clonal deletion of T cells. Curr Opin Immunol 7:196–205

    Article  PubMed  CAS  Google Scholar 

  • Stet RJ, Kruiswijk CP, Dixon B (2003) Major histocompatibility lineages and immune gene function in teleost fishes: the road not taken. Crit Rev Immunol 23:441–471

    Article  PubMed  CAS  Google Scholar 

  • Vallejo AN, Miller NW, Clem LW (1992) Antigen processing and presentation in teleost immune responses. Annu Rev Fish Dis 2:73–89

    Article  Google Scholar 

  • Van Muiswinkel WB (1995) The piscine immune system: innate and acquired immunity. In: Woo PTK (ed) Fish disease and disorders, vol 1. Protozoan and metazoan infections. CAB International, Wallingford, pp 729–750

    Google Scholar 

  • Wermenstam NE, Pilstrom L (2001) T-cell antigen receptors in Atlantic cod (Gadus morhua L.): structure, organisation and expression of TCR α and β genes. Dev Comp Immunol 25:117–135

    Article  PubMed  CAS  Google Scholar 

  • Zapata A, Chibà A, Varas A (1996) Cells and tissues of the immune system of fish. In: Iwama Q, Nakanishi T (eds) The fish immune system: organism, pathogen and environment. Academic Press, San Diego, pp 1–62

    Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. Magugliani and Mr. E. Vela (Nuova Azzurro, Torvaldaliga-Civitavecchia, Rome, Italy) for the generous supply of experimental animals and to Prof. G. Scapigliati (University of Tuscia, Viterbo, Italy) for the supply of DLT15 and DLIg3 monoclonal antibodies. We thank Prof. G. Vasta (Center of Marine Biotechnology, Baltimore, Md., US) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicla Romano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romano, N., Rossi, F., Abelli, L. et al. Majority of TcRβ+ T-lymphocytes located in thymus and midgut of the bony fish, Dicentrarchus labrax (L.). Cell Tissue Res 329, 479–489 (2007). https://doi.org/10.1007/s00441-007-0429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0429-z

Keywords

Navigation