Skip to main content
Log in

Neuroglobin Expression in the Mammalian Auditory System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The energy-yielding pathways that provide the large amounts of metabolic energy required by inner ear sensorineural cells are poorly understood. Neuroglobin (Ngb) is a neuron-specific hemoprotein of the globin family, which is suggested to be involved in oxidative energy metabolism. Here, we present quantitative real-time reverse transcription PCR, in situ hybridization, immunohistochemical, and Western blot evidence that neuroglobin is highly expressed in the mouse and rat cochlea. For primary cochlea neurons, Ngb expression is limited to the subpopulation of type I spiral ganglion cells, those which innervate inner hair cells, while the subpopulation of type II spiral ganglion cells which innervate the outer hair cells do not express Ngb. We further investigated Ngb distribution in rat, mouse, and human auditory brainstem centers, and found that the cochlear nuclei and superior olivary complex (SOC) also express considerable amounts of Ngb. Notably, the majority of olivocochlear neurons, those which provide efferent innervation of outer hair cells as identified by neuronal tract tracing, were Ngb-immunoreactive. We also observed that neuroglobin in the SOC frequently co-localized with neuronal nitric oxide synthase, the enzyme responsible for nitric oxide production. Our findings suggest that neuroglobin is well positioned to play an important physiologic role in the oxygen homeostasis of the peripheral and central auditory nervous system, and provides the first evidence that Ngb signal differentiates the central projections of the inner and outer hair cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

pb:

Base pairs

DPO:

Dorsal paraolivary nucleus

FG:

Fluoro-Gold

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

IHC:

Inner hair cells

ISH:

In situ hybridization

LOC/MOC:

Lateral/medial olivocochlear neurons

LSO:

Lateral superior olive

MNTB:

Medial nucleus of the trapezoid body

MSO:

Medial superior olive

Ngb:

Neuroglobin

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

OHC:

Outer hair cells

OCN:

Olivocochlear neurons

PBS:

Phosphate-buffered 0.9 % saline

RPO:

Rostral paraolivary nucleus

rt-RT-PCR:

Real-time reverse transcription polymerase chain-reaction

RT:

Room temperature

Sgn:

Spiral ganglion neurons

SOC:

Superior olivary complex

SPO:

Superior paraolivary nucleus

VNTB:

Ventral nucleus of the trapezoid body

VPO:

Ventral paraolivary nucleus

References

  1. Weber RE, Vinogradov SN (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81(2):569–628

    CAS  PubMed  Google Scholar 

  2. Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206(Pt 12):2011–2020

    Article  CAS  PubMed  Google Scholar 

  3. Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407:520–523

    Article  CAS  PubMed  Google Scholar 

  4. Trent JT, Hargrove MS (2002) A ubiquitously expressed human hexacoordinate hemoglobin. J Biol Chem 277:19538–19545

    Article  CAS  PubMed  Google Scholar 

  5. Kawada N, Kristensen DB, Asahina K, Nakatani K, Minamiyama Y, Seki S, Yoshizato K (2001) Characterization of a stellate cell activation-associated protein (STAP) with peroxidase activity found in rat hepatic stellate cells. J Biol Chem 276:25318–25323

    Article  CAS  PubMed  Google Scholar 

  6. Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 19(4):416–421

    Article  CAS  PubMed  Google Scholar 

  7. Kugelstadt D, Haberkamp M, Hankeln T, Burmester T (2004) Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken. Biochem Biophys Res Commun 325:719–725

    Article  CAS  PubMed  Google Scholar 

  8. Roesner A, Fuchs C, Hankeln T, Burmester T (2005) A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals. Mol Biol Evol 22:12–20

    Article  CAS  PubMed  Google Scholar 

  9. Fuchs C, Burmester T, Hankeln T (2006) The amphibian globin gene repertoire as revealed by the Xenopus genome. Cytogenet Genome Res 112(3–4):296–306

    Article  CAS  PubMed  Google Scholar 

  10. Hoogewijs D, Ebner B, Germani F, Hoffmann FG, Fabrizius A, Moens L, Burmester T, Dewilde S, Storz JF, Vinogradov SN, Hankeln T (2012) Androglobin: a chimeric globin in metazoans that is preferentially expressed in mammalian testes. Mol Biol Evol 29(4):1105–1114

    Article  CAS  PubMed  Google Scholar 

  11. Burmester T, Hankeln T (2014) Function and evolution of vertebrate globins. Acta Physiol 211:501–514

    Article  CAS  Google Scholar 

  12. Schwarze K, Burmester T (2013) Conservation of globin genes in the “living fossil” Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family. Biochim Biophys Acta 1834(9):1801–1812

    Article  CAS  PubMed  Google Scholar 

  13. Burmester T, Haberkamp M, Mitz S, Roesner A, Schmidt M, Ebner B, Gerlach F, Fuchs C, Hankeln T (2004) Neuroglobin and cytoglobin: genes, proteins and evolution. IUBMB Life 56:703–707

    Article  CAS  PubMed  Google Scholar 

  14. Geuens E, Brouns I, Flamez D, DeWilde S, Timmermans JP, Moens L (2003) A globin in the nucleus! J Biol Chem 278:30417–30420

    Article  CAS  PubMed  Google Scholar 

  15. Reuss S, Saaler-Reinhardt S, Weich B, Wystub S, Reuss MH, Burmester T, Hankeln T (2002) Expression analysis of neuroglobin mRNA in rodent tissues. Neuroscience 115:645–656

    Article  CAS  PubMed  Google Scholar 

  16. Wystub S, Laufs T, Schmidt M, Burmester T, Maas U, Saaler-Reinhardt S, Hankeln T, Reuss S (2003) Localisation of neuroglobin protein in the mouse brain. Neurosci Lett 346:114–116

    Article  CAS  PubMed  Google Scholar 

  17. Laufs TL, Wystub S, Reuss S, Burmester T, SaalerReinhardt S, Hankeln T (2004) Neuron-specific expression of neuroglobin in mammals. Neurosci Lett 362:83–86

    Article  CAS  PubMed  Google Scholar 

  18. Mitz SA, Reuss S, Folkow LP, Blix AS, Ramirez JM, Hankeln T, Burmester T (2009) When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience 163:552–560

    Article  CAS  PubMed  Google Scholar 

  19. Hundahl CA, Allen GC, Nyengaard JR, Dewilde S, Carter BD, Kelsen J, Hay-Schmidt A (2008) Neuroglobin in the rat brain: localization. Neuroendocrinology 88:173–182

    Article  CAS  PubMed  Google Scholar 

  20. Schneuer M, Flachsbarth S, Czech-Damal NU, Folkow LP, Siebert U, Burmester T (2012) Neuroglobin of seals and whales: evidence for a divergent role in the diving brain. Neuroscience 223:35–44

    Article  CAS  PubMed  Google Scholar 

  21. Mammen PPA, Shelton JM, Goetsch SC, Williams SC, Richardson JA, Garry MG, Garry DJ (2002) Neuroglobin, a novel member of the globin family, is expressed in focal regions of the brain. J Histochem Cytochem 50:1591–1598

    Article  CAS  PubMed  Google Scholar 

  22. Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, Nyengaard JR, Kelsen J, Hay-Schmidt A (2010) Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res 1331:58–73

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt M, Laufs T, Reuss S, Hankeln T, Burmester T (2005) Divergent distribution of cytoglobin and neuroglobin in the murine eye. Neurosci Lett 374:207–211

    Article  CAS  PubMed  Google Scholar 

  24. Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, Hankeln T (2010) Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci U S A 107(50):21570–21575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmidt M, Giessl A, Laufs T, Hankeln T, Wolfrum U, Burmester T (2003) How does the eye breathe?—Evidence for neuroglobin-mediated oxygen supply in the mammalian retina. J Biol Chem 278:1932–1935

    Article  CAS  PubMed  Google Scholar 

  26. Bentmann A, Schmidt M, Reuss S, Wolfrum U, Hankeln T, Burmester T (2005) Divergent distribution in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J Biol Chem 280:20660–20665

    Article  CAS  PubMed  Google Scholar 

  27. Ostojic J, Sakaguchi DS, de Lathouder Y, Hargrove MS, Trent JT 3rd, Kwon YH, Kardon RH, Kuehn MH, Betts DM, Grozdanic S (2006) Neuroglobin and cytoglobin: oxygen-binding proteins in retinal neurons. Invest Ophthalmol Vis Sci 47(3):1016–1023

    Article  PubMed  Google Scholar 

  28. Rajendram R, Rao NA (2007) Neuroglobin in normal retina and retina from eyes with advanced glaucoma. Br J Ophthalmol 91(5):663–666

    Article  PubMed  Google Scholar 

  29. Roesner A, Mitz SA, Hankeln T, Burmester T (2008) Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J 275(14):3633–3643

    Article  CAS  PubMed  Google Scholar 

  30. Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA (2001) Neuroglobin is upregulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci U S A 98:15306–15311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun YJ, Jin KL, Peel A, Mao XO, Xie L, Greenberg DA (2003) Neuroglobin protects the brain from experimental stroke in vivo. Proc Natl Acad Sci U S A 100:3497–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raida Z, Hundahl CA, Kelsen J, Nyengaard JR, Hay-Schmidt A (2012) Reduced infarct size in neuroglobin-null mice after experimental stroke in vivo. Exp Translat Stroke Med 4(1):15

    Article  CAS  Google Scholar 

  33. Burmester T, Hankeln T (2009) What is the function of neuroglobin? J Exp Biol 212(Pt 10):1423–1428

    Article  CAS  PubMed  Google Scholar 

  34. Hankeln T, Ebner B, Fuchs C, Gerlach F, Haberkamp M, Laufs TL, Roesner A, Schmidt M, Weich B, Wystub S, Saaler-Reinhardt S, Reuss S, Bolognesi M, Sanctis DD, Marden MC, Kiger L, Moens L, Dewilde S, Nevo E, Avivi A, Weber RE, Fago A, Burmester T (2005) Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J Inorg Biochem 99:110–119

    Article  CAS  PubMed  Google Scholar 

  35. Koga K, Hakuba N, Watanabe F, Shudou M, Nakagawa T, Gyo K (2003) Transient cochlear ischemia causes delayed cell death in the organ of Corti: an experimental study in gerbils. J Comp Neurol 456:105–111

    Article  PubMed  Google Scholar 

  36. Brown MC, Santos-Sacchi J (2013) Audition. In: Squire L, Berg D, Bloom FE, du Lac S, Ghosh A (eds) Fundamental Neuroscience, 4th edn. Elsevier, Amsterdam, pp 553–576

    Chapter  Google Scholar 

  37. Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea, vol 8, Springer Handbook of Auditory Research. Springer, New York, pp 44–129

    Chapter  Google Scholar 

  38. Dallos P (1996) Overview: cochlear neurobiology. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea, vol 8. Springer Handbook of Auditory Research. Springer, New York, pp 1–43

    Google Scholar 

  39. Møller A (2007) Hearing: anatomy, physiology, and disorders of the auditory system, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  40. Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60:397–422

    Article  PubMed  Google Scholar 

  41. Puschner B, Schacht J (1997) Energy metabolism in cochlear outer hair cells in vitro. Hear Res 114(1–2):102–106

    Article  CAS  PubMed  Google Scholar 

  42. Ryan AF, Goodwin P, Woolf NK, Sharp F (1982) Auditory stimulation alters the pattern of 2-deoxyglucose uptake in the inner ear. Brain Res 234(2):213–225

    Article  CAS  PubMed  Google Scholar 

  43. Goodwin PC, Ryan AF, Sharp FR, Woolf NK, Davidson TM (1984) Cochlear deoxyglucose uptake: relationship to stimulus intensity. Hearing Res 15(3):215–224

    Article  CAS  Google Scholar 

  44. Canlon B, Anniko M (1987) The postnatal development of stimulated deoxyglucose uptake into the mouse cochlea and the inferior colliculus. Archives of oto-rhino-laryngology 244(5):273–277

    Article  CAS  PubMed  Google Scholar 

  45. Schousboe A, Booher J, Hertz L (1970) Content of ATP in cultivated neurons and astrocytes exposed to balanced and potassium-rich media. J Neurochem 17(10):1501–1504

    Article  CAS  PubMed  Google Scholar 

  46. Thalmann R, Thalmann I, Comegys TH (1972) Quantitative cytochemistry of the organ of Corti. Dissection, weight determination and analysis of single outer hair cells. Laryngoscope 82(11):2059–2078

    Article  CAS  PubMed  Google Scholar 

  47. Thalmann R, Miyoshi T, Thalmann I (1972) The influence of ischemia upon the energy reserves of inner ear tissues. Laryngoscope 82(12):2249–2272

    Article  CAS  PubMed  Google Scholar 

  48. Scheibe F, Haupt H, Rothe E, Hache U (1981) On the glucose, pyruvate, and lactate concentration of perilymph, blood, and cerebrospinal fluid of unexposed and sound-exposed guinea pigs under ethyl urethane anesthesia (author’s transl). Archives of oto-rhino-laryngology 233(1):89–97

    Article  CAS  PubMed  Google Scholar 

  49. Axelsson A (1988) Comparative anatomy of cochlear blood vessels. Am J Otolaryngol 9(6):278–290

    Article  CAS  PubMed  Google Scholar 

  50. Yu DY, Cringle SJ (2001) Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Progr Retinal Eye Res 20(2):175–208

    Article  CAS  Google Scholar 

  51. Lopez IA, Acuna D, Shahram Y, Mowlds D, Ngan AM, Rungvivatjarus T, Sharma Y, Edmond J (2010) Neuroglobin expression in the cochlea of rat pups exposed to chronic very mild carbon monoxide (25 ppm) in air during and after the prenatal period. Brain Res 1327:56–68

    Article  CAS  PubMed  Google Scholar 

  52. McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    Article  CAS  PubMed  Google Scholar 

  53. Riemann R, Reuss S (1999) Nitric oxide synthase in identified olivocochlear projection neurons in rat and guinea pig. Hear Res 135:181–189

    Article  CAS  PubMed  Google Scholar 

  54. Reuss S, Disque-Kaiser U, Antoniou-Lipfert P, Najaf Gholi M, Riemann E, Riemann R (2009) Neurochemistry of olivocochlear neurons in the hamster. Anat Rec 292:461–471

    Article  Google Scholar 

  55. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Article  CAS  PubMed  Google Scholar 

  56. Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

  57. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego

    Google Scholar 

  58. Schwartz IR (1992) The superior olivary complex and lateral lemniscal nuclei. In: Webster DB, Popper AN, Fay RF (eds) The Mammalian Auditory Pathway: Neuroanatomy. Springer, New York, pp 117–167

    Chapter  Google Scholar 

  59. Warr BW (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway. Neuroanatomy Springer, New York, pp 410–448

    Chapter  Google Scholar 

  60. Kulesza RJ, Vinuela A, Saldana E, Berrebi AS (2002) Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat. Hear Res 168:12–24

    Article  PubMed  Google Scholar 

  61. Malmierca MS, Merchan MA (2004) Auditory system. In: Paxinos G (ed) The rat nervous system, Thirdth edn. Elsevier Academic Press, Amsterdam, pp 997–1082

    Chapter  Google Scholar 

  62. Vetter DE, Mugnaini E (1992) Distribution and dendritic features of three groups of rat olivocochlear neurons. A study with two retrograde cholera toxin tracers. Anat Embryol 185:1–16

    Article  CAS  PubMed  Google Scholar 

  63. Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    Article  CAS  PubMed  Google Scholar 

  64. Berglund AM, Ryugo DK (1991) Neurofilament antibodies and spiral ganglion neurons of the mammalian cochlea. J Comp Neurol 306(3):393–408

    Article  CAS  PubMed  Google Scholar 

  65. Hafidi A (1998) Peripherin-like immunoreactivity in type II spiral ganglion cell body and projections. Brain Res 805:181–190

    Article  CAS  PubMed  Google Scholar 

  66. Pocsai K, Pal B, Pap P, Bakondi G, Kosztka L, Rusznak Z, Szucs G (2007) Rhodamine backfilling and confocal microscopy as a tool for the unambiguous identification of neuronal cell types: a study of the neurones of the rat cochlear nucleus. Brain Res Bull 71(5):529–538

    Article  CAS  PubMed  Google Scholar 

  67. White JS, Warr WB (1983) The dual origins of the olivocochlear bundle in the albino rat. J Comp Neurol 219:203–214

    Article  CAS  PubMed  Google Scholar 

  68. Aschoff A, Ostwald J (1988) Distribution of cochlear efferents and olivo-collicular neurons in the brainstem of rat and guinea pig. A double labeling study with fluorescent tracers. Exp Brain Res 71:241–251

    CAS  PubMed  Google Scholar 

  69. Sawada S, Mori N, Mount RJ, Harrison RV (2001) Differential vulnerability of inner and outer hair cell systems to chronic mild hypoxia and glutamate ototoxicity: insights into the cause of auditory neuropathy. J Otolaryngol 30(2):106–114

    Article  CAS  PubMed  Google Scholar 

  70. Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H, Liu XL, Nuttall AL (2003) Disorders of cochlear blood flow. Brain Res Rev 43:17–28

    Article  PubMed  Google Scholar 

  71. Axelsson A, Ryan A, Woolf N (1986) The early postnatal development of the cochlear vasculature in the gerbil. Acta Otolaryngol 101(1–2):75–87

    Article  CAS  PubMed  Google Scholar 

  72. Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93(1):557–569

    Article  PubMed  Google Scholar 

  73. Robertson D (1984) Horseradish peroxidase injection of physiologically characterized afferent and efferent neurones in the guinea pig spiral ganglion. Hear Res 15(2):113–121

    Article  CAS  PubMed  Google Scholar 

  74. Rusznak Z, Szucs G (2009) Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Archiv: Eur J Physiol 457(6):1303–1325

    Article  CAS  Google Scholar 

  75. Xia A, Kikuchi T, Hozawa K, Katori Y, Takasaka T (1999) Expression of connexin 26 and Na, K-ATPase in the developing mouse cochlear lateral wall: functional implications. Brain Res 846:106–111

    Article  CAS  PubMed  Google Scholar 

  76. Dewilde S, Kiger L, Burmester T, Hankeln T, Baudin-Creuza V, Aerts T, Marden MC, Caubergs R, Moens L (2001) Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J Biol Chem 276(42):38949–38955

    Article  CAS  PubMed  Google Scholar 

  77. Spoendlin H (1972) Innervation densities of the cochlea. Acta Otolaryngol 73(2):235–248

    Article  CAS  PubMed  Google Scholar 

  78. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227(4683):194–196

    Article  CAS  PubMed  Google Scholar 

  79. Ruel J, Wang J, Rebillard G, Eybalin M, Lloyd R, Pujol R, Puel JL (2007) Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hear Res 227(1–2):19–27

    Article  CAS  PubMed  Google Scholar 

  80. Warr WB, Boche JB, Neely ST (1997) Efferent innervation of the inner hair cell region: origins and terminations of two lateral olivocochlear systems. Hear Res 108:89–111

    Article  CAS  PubMed  Google Scholar 

  81. Horvath M, Kraus KS, Illing RB (2000) Olivocochlear neurons sending axon collaterals into the ventral cochlear nucleus of the rat. J Comp Neurol 422:95–105

    Article  CAS  PubMed  Google Scholar 

  82. Sanchez-Gonzalez MA, Warr WB, Lopez DE (2003) Anatomy of olivocochlear neurons in the hamster studied with Fluoro-Gold. Hear Res 185:65–76

    Article  PubMed  Google Scholar 

  83. Hill JC, Prasher DK, Luxon LM (1997) Evidence for efferent effects on auditory afferent activity, and their functional relevance. Clin Otolaryngol Alied Sci 22(5):394–402

    Article  CAS  Google Scholar 

  84. Guinan JJ Jr (2010) Cochlear efferent innervation and function. Curr Opin Otolaryngol Head Neck Surge 18(5):447–453

    Article  Google Scholar 

  85. Wersinger E, Fuchs PA (2011) Modulation of hair cell efferents. Hear Res 279(1–2):1–12

    Article  PubMed  Google Scholar 

  86. Guinan JJ Jr, Salt A, Cheatham MA (2012) Progress in cochlear physiology after Bekesy. Hear Res 293(1–2):12–20

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liberman MC (1988) Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60(5):1779–1798

    CAS  PubMed  Google Scholar 

  88. Brunori M, Giuffre A, Nienhaus K, Nienhaus GU, Scandurra FM, Vallone B (2005) Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. Proc Natl Acad Sci U S A 102:8483–8488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Brunori M, Vallone B (2007) Neuroglobin, seven years after. Cell Mol Life Sci 64:1259–1268

    Article  CAS  PubMed  Google Scholar 

  90. Fessenden JD, Altschuler RA, Seasholtz AF, Schacht J (1999) Nitric oxide/cyclic guanosine monophosphate pathway in the peripheral and central auditory system of the rat. J Comp Neurol 404:52–63

    Article  CAS  PubMed  Google Scholar 

  91. Zdanski CJ, Prazma J, Petrusz P, Grossman G, Raynor E, Smith TL, Pillsbury HC (1994) Nitric oxide synthase is an active enzyme in the spiral ganglion cells of the rat cochlea. Hear Res 79:39–47

    Article  CAS  PubMed  Google Scholar 

  92. Rodrigo J, Springall DR, Uttenthal O, Bentura ML, Abadia-Molina F, Riveros-Moreno V, Martínez-Murillo R, Polak JM, Moncada S (1994) Localization of nitric oxide synthase in the adult rat brain. Philos Trans R Soc Lond B Biol Sci 345:175–221

    Article  CAS  PubMed  Google Scholar 

  93. Burmester T, Hankeln T (2008) Neuroglobin and other nerve hemoglobins. In: Bolognesi M, di Prisco G, Verde C (eds) Dioxygen Binding and Sensing Proteins, vol 9. Protein Reviews. Springer, Milan, pp 211–222

    Chapter  Google Scholar 

  94. Hundahl CA, Kelsen J, Dewilde S, Hay-Schmidt A (2008) Neuroglobin in the rat brain (II): co-localisation with neurotransmitters. Neuroendocrinology 88:183–198

    Article  CAS  PubMed  Google Scholar 

  95. Hankeln T, Wystub S, Laufs T, Schmidt M, Gerlach F, Saaler-Reinhardt S, Reuss S, Burmester T (2004) The cellular and subcellular localization of neuroglobin and cytoglobin—a clue to their function? IUBMB Life 56(11–12):671–679

    Article  CAS  PubMed  Google Scholar 

  96. Lechauve C, Augustin S, Roussel D, Sahel JA, Corral-Debrinski M (2013) Neuroglobin involvement in visual pathways through the optic nerve. Biochim Biophys Acta 1834(9):1772–1778

    Article  CAS  PubMed  Google Scholar 

  97. Amunts K, Morosan P, Hilbig H, Zilles K (2012) Auditory system. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 1270–1300

    Chapter  Google Scholar 

  98. Moore JK (2000) Organization of the human superior olivary complex. Microsc Res Tech 51:403–412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health, National Institute for Deafness and Communication Disorders grants DC00386 and DC02666, and the Research Service of the Department of Veterans Affairs (USA), from the Röttger-Stiftung and Hoffmann-Klose-Stiftung (Germany) and by the Deutsche Forschungsgemeinschaft (Bu956/5 and Ha2103/3). We thank Dr. Thorsten Fink, Department of Pathology, HSK Wiesbaden, Germany, for providing the human brainstem specimens. The University of California Cancer Center Biomedical Imaging Core is also thanked for their imaging support. We thank Steve McMullen of the UCSD Cancer Center Digital Imaging Shared Resource for his assistance in collecting the deconvolution digital microscope images; Anuradha Desai of the Department of Surgery, University of California at San Diego and the Veterans Affairs Research Service, VA San Diego Healthcare System, CA, for her technical assistance with the Western blot assays; and Kunlin Jin and David A. Greenberg of Buck Institute for Age Research, Novato, CA, for their helpful discussions and comments.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Reuss.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 42 kb)

ESM 2

(DOC 1.39 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reuss, S., Banica, O., Elgurt, M. et al. Neuroglobin Expression in the Mammalian Auditory System. Mol Neurobiol 53, 1461–1477 (2016). https://doi.org/10.1007/s12035-014-9082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9082-1

Keywords

Navigation