Skip to main content

Advertisement

Log in

Sensory collaterals, intramural ganglia and motor nerves in the guinea-pig bladder: evidence for intramural neural circuits

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The afferent output from the bladder is important for triggering micturition. This study identifies different types of afferent nerve and explores the connections of their collateral fibres on intramural ganglia and potential ganglionic targets. The experiments were performed on tissues from male guinea-pigs (n=16). Fibres positive for choline acetyl transferase (ChAT+) were found to originate close to the urothelium, to transit the sub-urothelial interstitial cell layer and to pass into the lamina propria. A different population of fibres, immunopositive for calcitonin gene-related peptide (CGRP), capsaicin receptors or neurofilament protein (NF), were seen to intertwine with the ChAT+ fibres in the lamina propria. The ChAT+ fibres did not express NF. Ganglia with ChAT+ and NF+ neurones were found in the lamina propria and muscle. ChAT+ fibres, with pronounced terminal varicosities, were present on the nerve cell bodies. Two types were noted: NF+ terminals and those with little or no NF (NF) suggesting that their origins were the ChAT+ afferent collaterals and the adjacent ganglia. Fibres containing CGRP or substance P were seen on the ganglionic cells. α1B adrenergic receptors were also found on the neurones indicative of adrenergic synapses. Thus, the ganglia had multiple inputs. Different types of ChAT+ nerves were seen in the muscle: NF+ and NF. The ChAT+/NF+ nerves may represent a ganglionic output to the muscle. This complex neuronal network may therefore represent the elements generating and modulating bladder sensations. The role of such a scheme in bladder pathology and the therapeutic sites of action of anticholinergic and sympathomimetic drugs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, Kerrebroeck P van, Victor A, Wein A, Standardisation Sub-committee of the International Continence Society (2002) The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society.Neurourol Urodyn 21:167–178

    Article  PubMed  Google Scholar 

  • Andersson K-E (2002) Bladder activation: afferent mechanisms. Urology 59:43–50

    Article  PubMed  Google Scholar 

  • Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84:935–986

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Apodaca G, De Groat WC, Kanai AJ (1998) Adrenergic- and capsaicin-evoked nitric oxide release from urothelium and afferent nerves in urinary bladder. Am J Physiol 275:F226–F229

    PubMed  CAS  Google Scholar 

  • Birder LA, Kanai AJ, De Groat WC, Kiss S, Nealen ML, Burke NE, Dineley KE, Watkins S, Reynolds IJ, Caterina MJ (2001) Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci USA 98:13396–13401

    Article  PubMed  CAS  Google Scholar 

  • Birder LA, Nealen ML, Kiss S, De Groat WC, Caterina MJ, Wang E, Apodaca G, Kanai AJ (2002) Beta-adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J Neurosci 22:8063–8070

    PubMed  CAS  Google Scholar 

  • Coolsaet BL, Van Duyl WA, Van Os-Bossagh P, De Bakker HV (1993) New concepts in relation to urge and detrusor activity. Neurourol Urodyn 12:463–471

    Article  PubMed  CAS  Google Scholar 

  • Davidson RA, McCloskey KD (2005) Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. J Urol 173:1385–1390

    Article  PubMed  Google Scholar 

  • De Groat WC (2004) The urothelium in overactive bladder: passive bystander or active participant. Urology 64:7–11

    Article  PubMed  Google Scholar 

  • De Vente J, Hopkins DA, Markerink-van Ittersum M, Emson PC, Schmidt HHHW, Steinbusch HWM (1998) Distribution of nitric oxide synthase and nitric oxide-receptive, cyclic GMP producing structures in the rat brain. Neuroscience 87:207–241

    Article  PubMed  Google Scholar 

  • Dixon JS, Gilpin SA, Gilpin CJ, Gosling JA (1983) Intra-mural ganglia of the human urinary bladder. Br J Urol 55:195–198

    PubMed  CAS  Google Scholar 

  • Drake MJ, Mills IW, Gillespie JI (2001) Model of peripheral autonomous modules and a myovesical plexus in normal and overactive bladder function. Lancet 358:401–403

    Article  PubMed  CAS  Google Scholar 

  • Drake MJ, Gardner BP, Brading AF (2003) Innervation of the detrusor muscle bundle in neurogenic detrusor overactivity.BJU Int 91:702–710

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J Physiol 505:503–511

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Kunze WAA, Bertrand PP, Clerc N, Bornstein JC (1998) Intrinsic primary afferent neurones in the intestine. Prog Neurobiol 64:1–18

    Article  Google Scholar 

  • Furness JB, Jones C, Nurgali K, Clerc N (2004) Intrinsic primary afferent neurones and nerve circuits within the intestine. Prog Neurobiol 72:143–164

    Article  PubMed  CAS  Google Scholar 

  • Gabella G (1990) Intramural neurones in the urinary bladder of the guinea pig. Cell Tissue Res 261:231–237

    Article  PubMed  CAS  Google Scholar 

  • Gabella G, Davis C (1998) Distribution of affernt axons in the bladder of rats. J Neurocytol 27:141–155

    Article  PubMed  CAS  Google Scholar 

  • Gibbins IL, Jobling P, Morris JL (2003) Functional organization of peripheral vasomotor pathways. Acta Physiol Scand 177:237–245

    Article  PubMed  CAS  Google Scholar 

  • Gilpin CJ, Dixon JS, Gilpin SA, Gosling JA (1983) The fine structure of autonomic neurones in the wall of the human urinary bladder. J Anat 137:705–713

    PubMed  Google Scholar 

  • Gillespie JI (2004a) The autonomous bladder: a view of the origin of bladder overactivity. BJU Int 93:478–483

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JI (2004b) Modulation of autonomous contractile activity in the isolated bladder of the GP. BJU Int 93:393–400

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JI (2004c) Noradrenaline inhibits autonomous activity in the isolated guinea pig bladder. BJU Int 93:401–409

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JI (2005a) Inhibitory actions of calcitonin gene related peptide and capsaicin: evidence for local axonal reflexes in the bladder wall. BJU Int 95:149–156

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JI (2005b) A developing view of the origins of urgency: the importnce of animal models. BJU Int 96:22–28

    Article  Google Scholar 

  • Gillespie JI, Harvey IJ, Drake MJ (2003) Agonist and nerve induced phasic activity in the isolated whole bladder of the guinea pig: evidence for two types of bladder activity. Exp Physiol 88:343–357

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JI, Markerink-van Ittersum M, De Vente J (2005) Interstitial cells and cholinergic signalling in the outer muscle layers of the guinea-pig bladder. BJU Int 97:379–385

    Article  CAS  Google Scholar 

  • Gjone R (1965) Peripheral autonomic influence on the motility of the urinary bladder in the cat. I. Rhythmic contractions. Acta Physiol Scand 65:370–377

    Article  PubMed  CAS  Google Scholar 

  • Gosling JA (1986) The distribution of noradrenergic nerves in the human lower urinary tract. Clin Sci 70(Suppl 14):3s–6s

    PubMed  Google Scholar 

  • Gosling JA, Dixon JS (1974) Sensory nerves in the mammalian urinary tract. An evaluation using light and electron microscopy. J Anat 117:133–144

    PubMed  CAS  Google Scholar 

  • Hardwick JC, Mawe GM, Parsons RL (1995) Evidence for afferent fibre innervation of parasympathetic neurones of the guinea pig cardiac ganglion. J Auton Nerv Syst 53:166–174

    Article  PubMed  CAS  Google Scholar 

  • Hashitani H, Yanai Y, Suzuki H (2004) Role of interstitial cells and gap junctions in the transmission of spontaneous Ca2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. J Physiol (Lond) 559:567–581

    Article  CAS  Google Scholar 

  • Iggo A (1955) Tension receptors in the stomach and urinary bladder. J Physiol (Lond) 128:593–607

    CAS  Google Scholar 

  • Kirby RS, Fowler CJ, Gosling JA, Bannister R (1985) Bladder dysfunction in distal autonomic neuropathy of acute onset. J Neurol Neurosurg Psychiatry 448:762–767

    Article  Google Scholar 

  • Lagou M, Drake MJ, Gillespie JI (2005) Volume-induced effects on the isolated bladder: a possible local reflex. BJU Int 94:1356–1365

    Article  Google Scholar 

  • Maggi CA, Meli A (1988) The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol 19:1–43

    PubMed  CAS  Google Scholar 

  • Maggi CA, Santicioli P, Geppetti P, Patacchini R, Frilli S, Astolfi M, Fusco B, Meli A (1988) Simultaneous release of substance P- and calcitonin gene-related peptide (CGRP)-like immunoreactivity from isolated muscle of the guinea pig urinary bladder. Neurosci Lett 87:163–167

    Article  PubMed  CAS  Google Scholar 

  • Mazzia C, Clerc N (1997) Ultrastructural relationships of spinal primary afferent fibres with neuronal and non-neuronal cells in the myenteric plexus of the cat oesophago-gastric junction. Neuroscience 80:925–937

    Article  PubMed  CAS  Google Scholar 

  • McCloskey KD, Gurney AM (2002) kit-positive cells in the guinea pig bladder. J Urol 168:832–836

    Article  PubMed  Google Scholar 

  • Morrison J (1999) The activation of bladder wall afferent nerves. Exp Physiol 84:131–136

    PubMed  CAS  Google Scholar 

  • Persson K, Igawa Y, Mattiasson A, Andersson KE (1992) Effects of inhibition of the L-arginine/nitric oxide pathway in the rat lower urinary tract in vivo and in vitro. Br J Pharmacol 107:178–184

    PubMed  CAS  Google Scholar 

  • Pirker ME, Montedonico S, Rolle U, Austvoll H, Puri P (2005) Regional differences in nitrergic neuronal density in the developing porcine urinary bladder. Pediatr Surg Int 21:161–168

    Article  PubMed  CAS  Google Scholar 

  • Rong W, Spyer KM, Burnstock G (2002) Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. J Physiol (Lond) 541:591–600

    Article  CAS  Google Scholar 

  • Sann H, McCarthy PW, Mader M, Schemann M (1995a) Choline acetyltransferase-like immunoreactivity in small diameter neurones of the rat dorsal root ganglion. Neurosci Lett 198:17–20

    Article  PubMed  CAS  Google Scholar 

  • Sann H, McCarthy PW, Schemann M, Jurzak M, Poethke R, Pierau FK (1995b) Choline acetyltransferase-immunoreactive neurones in a prevertebral sympathetic ganglion, the inferior mesenteric ganglion. J Auton Nerv Syst 54:195–205

    Article  PubMed  CAS  Google Scholar 

  • Schrodl F, Tines R, Brehmer A, Neuhuber WL (2001) Intrinsic choroidal neurones in the duck eye receive sympathetic input: anatomical evidence for adrenergic modulation of nitergic functions in the choroid. Cell Tissue Res 304:175–184

    Article  PubMed  CAS  Google Scholar 

  • Schrodl F, Schweigert M, Brehmer A, Neuhuber WL (2003) Intrinsic neurones in the duck choroid are contacted by CGRP-immunoreactive nerve fibres: evidence for a local pre-central reflex arc in the eye. Exp Eye Res 72:137–146

    Article  CAS  Google Scholar 

  • Sherrington CS (1892) Notes on the arrangement of some motor fibres in the lumbo-sacral plexus. J Physiol (Lond) 13:621–772

    CAS  Google Scholar 

  • Smet PJ, Edyvane KA, Jonavicius J, Marshall VR (1996) Neuropeptides and neurotransmittersynthesizing enzymes in intrinsic neurons of the human urinary bladder. J Neurocytol 25:112–124

    Article  PubMed  CAS  Google Scholar 

  • Vaughan CW, Satchell PM (1995) Urine storage mechanisms. Prog Neurobiol 46:215–237

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Miyamae K, Iwashita H, Otani M, Inadome A (2004) Management of detrusor dysfunction in the elderly: changes in acetylcholine and adenosine triphosphate release during aging. Urology 63-sup1:17–23

    Article  Google Scholar 

  • Zhou Y, Ling EA (1998) Co-localization of nitric oxide synthase and some neurotransmitters in the intramural ganglia of the guinea pig urinary bladder. J Comp Neurol 394:496–505

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Gillespie.

Additional information

We gratefully acknowledge the support of Pfizer. This work was supported by a grant from the Detrol Research Programme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, J.I., Markerink-van Ittersum, M. & de Vente, J. Sensory collaterals, intramural ganglia and motor nerves in the guinea-pig bladder: evidence for intramural neural circuits. Cell Tissue Res 325, 33–45 (2006). https://doi.org/10.1007/s00441-006-0166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0166-8

Keywords

Navigation