Skip to main content

Advertisement

Log in

Differential tissue distribution of the Invs gene product inversin

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Nephronophthisis is a common genetic cause of end-stage renal disease in childhood. Recently, Invs was identified as the gene mutated in the infantile form of nephronophthisis. Humans with nephronophthisis develop a large number of extrarenal manifestations, including situs variations, anomalies of the hepatobiliary system, retinal degeneration and cerebellar ataxia. Mice homozygous for a mutation in the Invs gene (inv mouse) die during the first week after birth as a result of renal and liver failure. Although organ anomalies have been characterized in human nephronophthisis and the inv mouse, little is known about the tissue expression of the Invs gene product, inversin. We have used laser confocal microscopy of paraffin-embedded murine tissue sections to provide the first detailed characterization of the distribution of inversin in various organs. Our results show that inversin is localized to distal tubules in the kidney, hepatic bile ducts, acinar and ductal pancreatic cells, epithelial intestinal cells, splenic germinal centres, bronchiolar epithelial cells, dendrites of cerebellar Purkinje cells, retinal neural cells and spermatocytes and spermatids in the testis. The localization of inversin in distal tubules in the kidney and in extrarenal tissues suggests that the expression of this protein has an important function in a variety of organs. Further studies are required to understand the way in which mutations in the Invs gene lead to the multi-organ pathology of inv mouse and human nephronophthisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balster DA, O'Dorisio MS, Summers MA, Turman MA (2001) Segmental expression of somatostatin receptor subtypes sst(1) and sst(2) in tubules and glomeruli of human kidney. Am J Physiol Renal Physiol 280:F457–F465

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calvet JP (2003) Ciliary signaling goes down the tubes. Nat Genet 33:113–114

    Article  PubMed  CAS  Google Scholar 

  • Cano DA, Murcia NS, Pazour GJ, Hebrok M (2004) Orpk mouse model of polycystic kidney disease reveals essential role of primary cilia in pancreatic tissue organization. Development 131:3457–3467

    Article  PubMed  CAS  Google Scholar 

  • Chauvet V, Qian F, Boute N, Cai Y, Phakdeekitacharoen B, Onuchic LF, Attie-Bitach T, Guicharnaud L, Devuyst O, Germino GG, Gubler MC (2002) Expression of PKD1 and PKD2 transcripts and proteins in human embryo and during normal kidney development. Am J Pathol 160:973–983

    PubMed  CAS  Google Scholar 

  • Eley L, Turnpenny L, Yates LM, Craighead AS, Morgan D, Whistler C, Goodship JA, Strachan T (2004) A perspective on inversin. Cell Biol Int 28:119–124

    Article  PubMed  CAS  Google Scholar 

  • Engel U, Breborowicz D, Bog-Hansen T, Francis D (1997) Lectin staining of renal tubules in normal kidney. Acta Pathol Microbiol Immunol Scand 105:31–34

    CAS  Google Scholar 

  • Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov-Beskrovnaya O, Klinger K, Sandford R (2000) Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol 11:814–827

    PubMed  CAS  Google Scholar 

  • Gesualdo L, Di Paolo S, Calabro A, Milani S, Maiorano E, Ranieri E, Pannarale G, Schena FP (1996) Expression of epidermal growth factor and its receptor in normal and diseased human kidney: an immunohistochemical and in situ hybridization study. Kidney Int 49:656–665

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt F, Otto E (2000) Molecular genetics of nephronophthisis and medullary cystic kidney disease. J Am Soc Nephrol 11:1753–1761

    PubMed  CAS  Google Scholar 

  • Hildebrandt F, Otto E, Rensing C, Nothwang HG, Vollmer M, Adolphs J, Hanusch H, Brandis M (1997) A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet 17:149–153

    Article  PubMed  CAS  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Dackowski WR, Foggensteiner L, Coleman N, Thiru S, Petry LR, Burn TC, Connors TD, Van Raay T, Bradley J, Qian F, Onuchic LF, Watnick TJ, Piontek K, Hakim RM, Landes GM, Germino GG, Sandford R, Klinger KW (1997) Polycystin: in vitro synthesis, in vivo tissue expression, and subcellular localization identifies a large membrane-associated protein. Proc Natl Acad Sci U S A 94:6397–6402

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Markowitz GS, Cai Y, Li L, Wu G, Ward LC, Somlo S, D'Agati VD (1999) Polycystin-2 expression is developmentally regulated. Am J Physiol 277:F17–F25

    PubMed  CAS  Google Scholar 

  • Mazziotti MV, Willis LK, Heuckeroth RO, LaRegina MC, Swanson PE, Overbeek PA, Perlmutter DH (1999) Anomalous development of the hepatobiliary system in the inv mouse. Hepatology 30:372–378

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S (1996) PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272:1339–1342

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T (1998) Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395:177–181

    Article  PubMed  CAS  Google Scholar 

  • Morgan D, Turnpenny L, Goodship J, Dai W, Majumder K, Matthews L, Gardner A, Schuster G, Vien L, Harrison W, Elder FF, Penman-Splitt M, Overbeek P, Strachan T (1998) Inversin, a novel gene in the vertebrate left-right axis pathway, is partially deleted in the inv mouse. Nat Genet 20:149–156

    Article  PubMed  CAS  Google Scholar 

  • Morgan D, Eley L, Sayer J, Strachan T, Yates LM, Craighead AS, Goodship JA (2002) Expression analyses and interaction with the anaphase promoting complex protein Apc2 suggest a role for inversin in primary cilia and involvement in the cell cycle. Hum Mol Genet 11:3345–3350

    Article  PubMed  CAS  Google Scholar 

  • Morishima M, Yasui H, Nakazawa M, Ando M, Ishibashi M, Takao A (1998) Situs variation and cardiovascular anomalies in the transgenic mouse insertional mutation, inv. Teratology 57:302–309

    Article  PubMed  CAS  Google Scholar 

  • Nurnberger J, Bacallao RL, Phillips CL (2002) Inversin forms a complex with catenins and N-cadherin in polarized epithelial cells. Mol Biol Cell 13:3096–3106

    Article  PubMed  CAS  Google Scholar 

  • Nurnberger J, Kribben A, Opazo Saez A, Heusch G, Philipp T, Phillips CL (2004) The Invs gene encodes a microtubule associated protein. J Am Soc Nephrol 15:1700–1710

    Article  PubMed  CAS  Google Scholar 

  • Olbrich H, Fliegauf M, Hoefele J, Kispert A, Otto E, Volz A, Wolf MT, Sasmaz G, Trauer U, Reinhardt R, Sudbrak R, Antignac C, Gretz N, Walz G, Schermer B, Benzing T, Hildebrandt F, Omran H (2003) Mutations in a novel gene, NPHP3, cause adolescent nephronophthisis, tapeto-retinal degeneration and hepatic fibrosis. Nat Genet 34:455–459

    Article  PubMed  CAS  Google Scholar 

  • Omran H, Fernandez C, Jung M, Haffner K, Fargier B, Villaquiran A, Waldherr R, Gretz N, Brandis M, Ruschendorf F, Reis A, Hildebrandt F (2000) Identification of a new gene locus for adolescent nephronophthisis, on chromosome 3q22 in a large Venezuelan pedigree. Am J Hum Genet 66:118–127

    Article  PubMed  CAS  Google Scholar 

  • Otto E, Kispert A, Schatzle S, Lescher B, Rensing C, Hildebrandt F (2000) Nephrocystin: gene expression and sequence conservation between human, mouse, and Caenorhabditis elegans. J Am Soc Nephrol 11:270–282

    PubMed  CAS  Google Scholar 

  • Otto E, Hoefele J, Ruf R, Mueller AM, Hiller KS, Wolf MT, Schuermann MJ, Becker A, Birkenhager R, Sudbrak R, Hennies HC, Nurnberg P, Hildebrandt F (2002) A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet 71:1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Otto EA, Schermer B, Obara T, O'Toole JF, Hiller KS, Mueller AM, Ruf RG, Hoefele J, Beekmann F, Landau D, Foreman JW, Goodship JA, Strachan T, Kispert A, Wolf MT, Gagnadoux MF, Nivet H, Antignac C, Walz G, Drummond IA, Benzing T, Hildebrandt F (2003) Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat Genet 34:413–420

    Article  PubMed  CAS  Google Scholar 

  • Pennekamp P, Karcher C, Fischer A, Schweickert A, Skryabin B, Horst J, Blum M, Dworniczak B (2002) The ion channel polycystin-2 is required for left-right axis determination in mice. Curr Biol 12:938–943

    Article  PubMed  CAS  Google Scholar 

  • Phillips CL, Arend LJ, Filson AJ, Kojetin DJ, Clendenon JL, Fang S, Dunn KW (2001) Three-dimensional imaging of embryonic mouse kidney by two-photon microscopy. Am J Pathol 158:49–55

    PubMed  CAS  Google Scholar 

  • Phillips CL, Miller KJ, Filson AJ, Nurnberger J, Clendenon JL, Cook G, Dunn KW, Overbeek PA, Gattone VH, Bacallao RL (2004) Renal cysts of inv/inv mice resemble early infantile nephronophthisis. J Am Soc Nephrol 15:1744–1755

    Article  PubMed  Google Scholar 

  • Richards WG, Sweeney WE, Yoder BK, Wilkinson JE, Woychik RP, Avner ED (1998) Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J Clin Invest 101:935–939

    Article  PubMed  CAS  Google Scholar 

  • Ricker JL, Gattone VH II, Calvet JP, Rankin CA (2000) Development of autosomal recessive polycystic kidney disease in BALB/c-cpk/cpk mice. J Am Soc Nephrol 11:1837–1847

    PubMed  CAS  Google Scholar 

  • Ronco P, Brunisholz M, Geniteau-Legendre M, Chatelet F, Verroust P, Richet G (1987) Physiopathologic aspects of Tamm-Horsfall protein: a phylogenetically conserved marker of the thick ascending limb of Henle's loop. Adv Nephrol Necker Hosp 16:231–249

    PubMed  CAS  Google Scholar 

  • Salido EC, Lakshmanan J, Fisher DA, Shapiro LJ, Barajas L (1991) Expression of epidermal growth factor in the rat kidney. An immunocytochemical and in situ hybridization study. Histochemistry 96:65–72

    Article  PubMed  CAS  Google Scholar 

  • Schon P, Tsuchiya K, Lenoir D, Mochizuki T, Guichard C, Takai S, Maiti AK, Nihei H, Weil J, Yokoyama T, Bouvagnet P (2002) Identification, genomic organization, chromosomal mapping and mutation analysis of the human INV gene, the ortholog of a murine gene implicated in left-right axis development and biliary atresia. Hum Genet 110:157–165

    Article  PubMed  CAS  Google Scholar 

  • Takano K, Nakamoto T, Okajima M, Sudo A, Uetake K, Saitoh S (2003) Cerebellar and brainstem involvement in familial juvenile nephronophthisis type I. Pediatr Neurol 28:142–144

    Article  PubMed  Google Scholar 

  • Ward CJ, Yuan D, Masyuk TV, Wang X, Punyashthiti R, Whelan S, Bacallao R, Torra R, LaRusso NF, Torres VE, Harris PC (2003) Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet 12:2703–2710

    Article  PubMed  CAS  Google Scholar 

  • Ward HH, Wang J, Phillips C (2004) Analysis of multiple Invs transcripts in mouse and MDCK cells. Genomics 84:991–1001

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D, Saijoh Y, Nonaka S, Sasaki G, Ikawa Y, Yokoyama T, Hamada H (2003) The left-right determinant inversin is a component of node monocilia and other 9+0 cilia. Development 130:1725–1734

    Article  PubMed  CAS  Google Scholar 

  • Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350:151–164

    Article  PubMed  CAS  Google Scholar 

  • Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13:2508–2516

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama T, Copeland NG, Jenkins NA, Montgomery CA, Elder FF, Overbeek PA (1993) Reversal of left-right asymmetry: a situs inversus mutation. Science 260:679–682

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Carrie Phillips for her help in generating the antibody to inversin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Nürnberger.

Additional information

J.N. acknowledges funding from the Deutsche Forschungsgemeinschaft (Nu 118/1-1, Nu 118/3-1) and the intramural research program of the University Hospital of Essen (IFORES). A. K. acknowledges funding from the Deutsche Forschungsgemeinschaft (Kr 1108/2-2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nürnberger, J., Kavapurackal, R., Zhang, SJ. et al. Differential tissue distribution of the Invs gene product inversin. Cell Tissue Res 323, 147–155 (2006). https://doi.org/10.1007/s00441-005-0012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0012-4

Keywords

Navigation