Skip to main content

Advertisement

Log in

Immunolocalization of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

To elucidate the roles of proteoglycans (PGs), bone sialoprotein (BSP), and osteopontin (OPN) in cementogenesis, their distribution was investigated in developing and established acellular cementum of rat molars by an immunoperoxidase method. To characterize PGs, antibodies against five species of glycosaminoglycans (GAGs), chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), unsulfated chondroitin (C0S), dermatan sulfate (DS), and keratan sulfate (KS) were used. Routine histological staining was also applied. With onset of dentin mineralization, the initial cementum appeared on the dentin surface as a hematoxylin-stained fibril-poor layer. Subsequently, primitive principal fibers attached to the initial cementum. As the acellular cementum containing extrinsic fibers covered the initial cementum, the initial cementum formed the cemento-dentinal junction. Following immunohistochemistry at the earliest time of cementogenesis, the initial cementum was intensely immunoreactive for C4S, C6S, C0S, BSP, and OPN. After the initial cementum was embedded, neither the cemento-dentinal junction nor the cementum was immunoreactive for any GAG species. However, the cementum and cemento-dentinal junction were consistently immunoreactive for BSP. Although the cemento-dentinal junction was consistently immunoreactive for OPN, the remaining cementum showed no significant immunoreactivity. Thus, initial acellular cementogenesis requires a dense accumulation of PGs, BSP, and OPN, which may be associated with the mineralization process independently of collagen fibrils and initial principal fiber attachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–e
Fig. 3a, b
Fig. 4
Fig. 5
Fig. 6a–d Fig. 7a–d Fig. 8a–d Fig. 9a–d
Fig. 10a–c Fig. 11a–c

Similar content being viewed by others

References

  • Ababneh KT, Hall RC, Embery G (1998) Immunolocalization of glycosaminoglycans in aging, healthy and periodontally diseased human cementum. Arch Oral Biol 43:235–246

    Article  CAS  PubMed  Google Scholar 

  • Ababneh KT, Hall RC, Embery G (1999) The proteoglycans of human cementum: immunohistochemical localization in healthy, periodontally involved and aging teeth. J Periodontal Res 34:87–96

    CAS  PubMed  Google Scholar 

  • Bartold PM, Reinboth B, Nakae H, Narayanan AS (1990) Proteoglycans of bovine cementum. Matrix 10:10–19

    CAS  PubMed  Google Scholar 

  • Beertsen W, VandenBos T, Everts V (1999) Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res 78:1221–1229

    CAS  PubMed  Google Scholar 

  • Bosky AL (1995) Osteopontin and related phosphorylated sialoproteins: effects on mineralization. Ann N Y Acad Sci 760:249–256

    PubMed  Google Scholar 

  • Bosshardt DD, Nanci A (1997) Immunodetection of enamel- and cementum-related (bone) proteins at the enamel-free area and cervical portion of tooth in rat molars. J Bone Miner Res 12:367–379

    CAS  PubMed  Google Scholar 

  • Bosshardt DD, Nanci A (1998) Immunolocalization of epithelial and mesenchymal matrix constituents in association with inner enamel epithelial cells. J Histochem Cytochem 46:135–142

    CAS  PubMed  Google Scholar 

  • Bosshardt DD, Nanci A (2003) Immunocytochemical characterization of ectopic enamel deposits and cementicles in human teeth. Eur J Oral Sci 111:51–59

    Article  PubMed  Google Scholar 

  • Bosshardt DD, Zalzal S, McKee MD, Nanci A (1998) Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec 250:13–33

    Article  CAS  PubMed  Google Scholar 

  • Bronckers ALJJ, Farach-Carson MC, Waveren E van, Butler WT (1994) Immunolocalization of osteopontin, osteocalcin, and dentin sialoprotein during dental root formation and early cementogenesis in the rat. J Bone Miner Res 9:833–841

    CAS  PubMed  Google Scholar 

  • Byers S, Rooden JC van, Foster BK (1997) Structural changes in the large proteoglycan, aggrecan, in different zones of the ovine growth plate. Calcif Tissue Int 60:71–78

    Article  CAS  PubMed  Google Scholar 

  • Couchmann JR, Caterson B, Christner JE, Baker JR (1984) Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues. Nature 307:650–652

    PubMed  Google Scholar 

  • Chen J, Shapiro HS, Sodek J (1992) Development expression of bone sialoprotein mRNA in rat mineralized connective tissue. J Bone Miner Res 7:987–997

    CAS  PubMed  Google Scholar 

  • Chen J, McCulloch CA, Sodek J (1993) Bone sialoprotein in developing porcine dental tissues: cellular expression and comparison of tissue localization with osteopontin and osteonectin. Arch Oral Biol 38:241–249

    Article  CAS  PubMed  Google Scholar 

  • Chen J, McKee MD, Nanci A, Sodek J (1994) Bone sialoprotein mRNA expression and ultrastructural localization in fetal porcine calvarial bone: comparison with osteopontin. Histochem J 26:67–78

    CAS  PubMed  Google Scholar 

  • Cheng H, Caterson B, Neame PJ, Lester GE, Yamauchi M (1996) Differential distribution of lumican and fibromodulin in tooth cementum. Connect Tissue Res 34:87–96

    CAS  PubMed  Google Scholar 

  • Cheng H, Caterson B, Yamauchi M (1999) Identification and immunolocalization of chondroitin sulfate proteoglycans in tooth cementum. Connect Tissue Res 40:37–47

    CAS  PubMed  Google Scholar 

  • Cho MI, Garant PR (1988) Ultrastructural evidence of directed cell migration during initial cementoblast differentiation in root formation. J Periodontal Res 23:268–276

    CAS  PubMed  Google Scholar 

  • Cho MI, Garant PR (1989) Radioautographic study of (3H) mannose utilization during cementoblast differentiation, formation of acellular cementum, and development of periodontal ligament principal fibers. Anat Rec 223:209–222

    CAS  PubMed  Google Scholar 

  • Cho MI, Garant PR (2000) Development and general structure of the periodontium. Periodontology 24:9–27

    Article  CAS  Google Scholar 

  • Diekwisch TSH (2001) The developmental biology of cementum. Int J Dev Biol 45:695–706

    CAS  PubMed  Google Scholar 

  • Embery G, Waddington RJ, Hall RC, Last KS (2000) Connective tissue elements as diagnostic aids in periodontology. Periodontology 24:193–214

    Article  CAS  Google Scholar 

  • Embery G, Hall R, Waddington R, Septier D, Goldberg M (2001) Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12:331–349

    CAS  PubMed  Google Scholar 

  • Fujii T, Hirabayashi Y (1999) Histochemical studies of glycosaminoglycans in developing periodontal ligaments of ICR mouse. Anat Rec 254:465–473

    Article  CAS  PubMed  Google Scholar 

  • Ganss B, Kim RH, Sodek J (1999) Bone sialoprotein. Crit Rev Oral Biol Med 10:79–98

    CAS  PubMed  Google Scholar 

  • Goldberg M, Septier D, Lécole S, Chardin H, Quintana MA, Acevedo AC, Gafni G, Dillouya D, Vermelin L, Thonemann B, Scmalz G, Bissila-Mapahou P, Carreau JP (1995) Dental mineralization. Int J Dev Biol 39:93–110

    CAS  PubMed  Google Scholar 

  • Goldberg HA, Warner KJ, Li MC, Hunter GK (2001) Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res 42:25–37

    CAS  PubMed  Google Scholar 

  • Häkkinen L, Oksala O, Salo T, Rahemtulla F, Larjava H (1993) Immunohistochemical localization of proteoglycans in human periodontium. J Histochem Cytochem 41:1689–1699

    PubMed  Google Scholar 

  • Häkkinen L, Strassburger S, Kähäri V-M, Scott PG, Eichstetter I, Iozzo RV, Larjava H (2000) A role for decorin in the structural organization of periodontal ligament. Lab Invest 80:1869–1880

    PubMed  Google Scholar 

  • Hosoya A, Yoshiba K, Yoshiba N, Hoshi K, Iwaku M, Ozawa H (2003) An immunohistochemical study on hard tissue formation in a subcutaneously transplanted rat molar. Histochem Cell Biol 119:27–35

    CAS  PubMed  Google Scholar 

  • Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function. Annu Rev Biochem 67:609–652

    Article  CAS  PubMed  Google Scholar 

  • Ivanovski S, Li H, Haase HR, Bartold PM (2001) Expression of bone associated macromolecules by gingival and periodontal ligament fibroblasts. J Periodontal Res 36:131–141

    Article  CAS  PubMed  Google Scholar 

  • Iwamatsu Y (1993) Histochemical and electron microscopical study during the development of the mouse molar periodontal ligament (in Japanese). Jpn J Conserv Dent 36:252–270

    Google Scholar 

  • Kaneko H, Hashimoto S, Enokiya Y, Ogiuchi H, Shimono M (1999) Cell proliferation and death of Hertwig’s epithelial root sheath in the rat. Cell Tissue Res 298:95–103

    Article  CAS  PubMed  Google Scholar 

  • Kaneko S, Ohashi K, Soma K, Yanagishita M (2001) Occlusal hypofunction causes changes of proteoglycan content in the rat periodontal ligament. J Periodontal Res 36:9–17

    Article  CAS  PubMed  Google Scholar 

  • Larjava H, Häkkinen L, Rahemtulla F (1992) A biochemical analysis of human periodontal tissue proteoglycans. Biochem J 284:267–274

    CAS  PubMed  Google Scholar 

  • Lekic P, Sodek J, McCulloch CA (1996a) Osteopontin and bone sialoprotein expression in regenerating rat periodontal ligament and alveolar bone. Anat Rec 244:50–58

    Article  CAS  PubMed  Google Scholar 

  • Lekic P, Sodek J, McCulloch CA (1996b) Relationship of cellular proliferation to expression of osteopontin and bone sialoprotein in regenerating rat periodontium. Cell Tissue Res 285:491–500

    Article  CAS  PubMed  Google Scholar 

  • Limeback H (1991) Molecular mechanisms in dental hard tissue mineralization. Curr Opin Dent 1:826–835

    CAS  PubMed  Google Scholar 

  • Linde A (1995) Dentin mineralization and the role of odontoblasts in calcium transport. Connect Tissue Res 33:163–170

    CAS  PubMed  Google Scholar 

  • MacNeil RL, Somerman MJ (1993) Molecular factors regulating development and regeneration of cementum. J Periodontal Res 28:550–559

    CAS  PubMed  Google Scholar 

  • MacNeil RL, Sheng N, Strayhorn C, Fisher LW, Somerman MJ (1994) Bone sialoprotein is located to the root surface during cementogenesis. J Bone Miner Res 9:1597–1606

    CAS  PubMed  Google Scholar 

  • MacNeil RL, Berry J, D’Errico J, Strayhorn C, Piotroski B, Somerman MJ (1995a) Role of two mineral-associated adhesion molecules, osteopontin and bone sialoprotein, during cementogenesis. Connect Tissue Res 33:323–329

    Google Scholar 

  • MacNeil RL, Berry J, D’Errico J, Strayhorn C, Somerman MJ (1995b) Localization and expression of osteopontin in mineralized and non mineralized tissues of periodontium. Ann N Y Acad Sci 760:166–176

    CAS  PubMed  Google Scholar 

  • MacNeil RL, Berry J, Strayhorn C, Somerman MJ (1996) Expression of bone sialoprotein mRNA by cells lining the mouse tooth root during cementogenesis. Arch Oral Biol 41:827–835

    Article  CAS  PubMed  Google Scholar 

  • MacNeil RL, D’Errioco JA, Ouyang H, Berry J, Strayhorn C, Somerman MJ (1998) Isolation of murine cementoblasts: unique cells or uniquely-positioned osteoblasts? Eur J Oral Sci 106:350–356

    CAS  PubMed  Google Scholar 

  • Matias MA, Li H, Young WG, Bartold PM (2003a) Immunohistochemical localization of fibromodulin in the periodontium during cementogenesis and root formation in the rat molar. J Periodontal Res 38:502–507

    Article  CAS  PubMed  Google Scholar 

  • Matias MA, Li H, Young WG, Bartold PM (2003b) Immunohistochemical localization of extracellular matrix proteins in the periodontium during cementogenesis in the rat molar. Arch Oral Biol 48:709–716

    Article  CAS  PubMed  Google Scholar 

  • Matsuura M, Herr Y, Han KY, Lin WL, Genco RJ, Cho MI (1995) Immunohistochemical expression of extracellular matrix components of normal and healing periodontal tissues in the beagle dog. J Periodontol 66:905–914

    Google Scholar 

  • McKee MD, Nanci A (1996a) Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res 35:195–205

    Google Scholar 

  • McKee MD, Nanci A (1996b) Osteopontin at mineralized tissue interface in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turn over, and repair. Microsc Res Tech 33:141–164

    Article  CAS  PubMed  Google Scholar 

  • McKee MD, Farach-Carson MC, Butler WT, Hauschka DV, Nanci A (1993) Ultrastructural immunolocalization of non collagenous (osteopontin and osteocalcin) and plasma (albumin and α2HS-glycoprotein) proteins in rat bone. J Bone Miner Res 8:485–496

    CAS  PubMed  Google Scholar 

  • McKee MD, Zalzal S, Nanci A (1996) Extracellular matrix in tooth cementum and mantle dentin: localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 245:293–312

    Article  CAS  PubMed  Google Scholar 

  • Nanci A (1999) Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol 126:256–269

    Article  CAS  PubMed  Google Scholar 

  • Ohma N, Takagi Y, Takano Y (2002) Distribution of non-collagenous dentin matrix proteins and proteoglycans, and their relation to calcium accumulation in bisphosphonate-affected rat incisors. Eur J Oral Sci 108:222–232

    Article  Google Scholar 

  • Owens PDA (1980) A light and electron microscopic study of the early stages of root surface formation in molar teeth in the rat. Arch Oral Biol 24:901–907

    Article  Google Scholar 

  • Paynter KJ, Pudy G (1958) A study of the structure, chemical nature, and development of cementum in the rat. Anat Rec 131:233–251

    CAS  PubMed  Google Scholar 

  • Rittling SR, Matsumoto HN, McKee MD, Nanci A, An X, Novick KE, Kowalski AJ, Noda M, Denhardt DT (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13:1101–1111

    CAS  PubMed  Google Scholar 

  • Robey PG (1996) Vertebrate mineralized matrix proteins: structure and function. Connect Tissue Res 35:131–136

    CAS  PubMed  Google Scholar 

  • Sasano Y, Maruya Y, Sato H, Zhu J-X, Takahashi I, Mizoguchi I, Kagayama M (2001) Distinctive expression of extracellular matrix molecules at mRNA and protein levels during formation of cellular and acellular cementum in the rat. Histochem J 33:91–99

    Article  CAS  PubMed  Google Scholar 

  • Sato R, Yamamoto H, Kasai K, Yamauchi M (2002) Distribution of versican, linkprotein and hyaluronic acid in the rat periodontal ligament during experimental tooth movement. J Periodontal Res 37:15–22

    Article  CAS  PubMed  Google Scholar 

  • Schroeder HE (1986) Cementum. In: Schroeder HE (ed) The periodontium. Springer, Berlin Heidelberg New York, pp 23–127

  • Scott JE, Kyffin TW (1978) Demineralization in organic solvents by alkylammonium salts of ethylenediaminetetra-acetic acid. Biochem J 169:697–701

    CAS  PubMed  Google Scholar 

  • Sodek J, Ganss B, McKee MD (2000) Osteopontin. Crit Rev Oral Biol Med 11:279–303

    CAS  PubMed  Google Scholar 

  • Somerman MJ, Morrison GM, Alexander MB, Foster RA (1990a) Structure and composition of cementum. In: Bowen W, Tadak L (eds) Cariology of the 1990s. University of Rochester, New York, pp 155–171

  • Somerman MJ, Shroff B, Agraves WS, Morrison G, Craig AM, Denhard DT, Foster RA, Sauk JJ (1990b) Expression of attachment proteins during cementogenesis. J Biol Buccale 18:207–214

    CAS  PubMed  Google Scholar 

  • Sommer B, Bickel M, Hofstetter W, Wetterwald A (1996) Expression of matrix proteins during the development of mineralized tissues. Bone 19:371–380

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Inoue T, Shimono M, Yamada S (2002) Behavior of epithelial root sheath during tooth root formation in porcine molars: TUNEL, TEM, and immunohistochemical studies. Anat Embryol 206:13–20

    Article  PubMed  Google Scholar 

  • Tadatomo Y, Komatsu M, Kagayama M (2002) Immunohistochemical studies on physiological root resorption of rat molars (in Japanese). Jpn J Oral Biol 44:282–292

    Google Scholar 

  • Takagi M, Hishikawa H, Hosokawa Y, Kagami A, Rahemtulla F (1990) Immunohistochemical localization of glycosaminoglycans and proteoglycans in predentin and dentin of rat incisors. J Histochem Cytochem 38:319–324

    CAS  PubMed  Google Scholar 

  • Takagi M, Maeno M, Kagami A, Takahashi Y, Otsuka K (1992) Biochemical and lectin- and immunohistochemical studies of solubility and retention of bone matrix proteins during EDTA demineralization. Histochem J 24:78–85

    CAS  PubMed  Google Scholar 

  • Takagi M, Maeno M, Yamada T, Miyashita K, Otsuka K (1996) Nature and distribution of chondroitin sulfate and dermatan sulfate proteoglycans in rabbit alveolar bone. Histochem J 28:341–351

    CAS  PubMed  Google Scholar 

  • Thomas HF (1995) Root formation. Int J Dev Biol 39:231–237

    CAS  PubMed  Google Scholar 

  • Väänänen HK, Korhonen LK (1984) Immunohistochemical techniques for calcified tissues. In: Dickson GR (ed) Methods of calcified tissue preparation. Elsevier, Amsterdam, pp 309–332

  • Waddington RJ, Embery G (2001) Proteoglycans and orthodontic movement. J Orthod 28:281–290

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kubota T (1998) Characterization of fibromodulin isolated from bovine periodontal ligament. J Periodontal Res 33:1–7

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T (1986) The innermost layer of cementum: its ultrastructure, development, and calcification. Arch Histol Jpn 49:459–481

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Wakita M (1990) Initial attachment of principal fibers to the root dentin surface in rat molars. J Periodontal Res 25:113–119

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Domon T, Takahashi S, Islam N, Suzuki R, Wakita M (1999) The structure and function of the cemento-dentinal junction in human teeth. J Periodontal Res 34:261–268

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Domon T, Takahashi S, Islam MN, Suzuki R, Wakita M (2000) The structure of the cemento-dentinal junction in rat molars. Ann Anat 182:185–190

    CAS  Google Scholar 

  • Yamamoto T, Domon T, Takahashi S, Islam MN, Suzuki R (2001) The initial attachment of cemental fibrils to the root dentin surface in acellular and cellular cementogenesis in rat molars. Ann Anat 183:123–128

    CAS  PubMed  Google Scholar 

  • Zhao M, Takata T, Ogawa I, Miyauchi M, Ito H (1998) Localization of glycosaminoglycans (GAGs) in pleomorphic adenoma (PA) of salivary glands: an immunohistochemical evaluation. J Oral Pathol Med 27:272–277

    CAS  PubMed  Google Scholar 

  • Zhao M, Lu Y, Takata T, Ogawa I, Miyauchi M, Mock D, Nikai H (1999) Immunohistochemical and histochemical characterization of the mucosubstances of odontogenic mixoma: histogenesis and differential diagnosis. Pathol Res Pract 195:391–397

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Domon, T., Takahashi, S. et al. Immunolocalization of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars. Cell Tissue Res 317, 299–312 (2004). https://doi.org/10.1007/s00441-004-0896-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-004-0896-4

Keywords

Navigation