Skip to main content
Log in

Structural changes in the large proteoglycan, aggrecan, in different zones of the ovine growth plate

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The large cartilage proteoglycan, aggrecan, was found to vary throughout the ovine physis corresponding to the maturational state of the resident chondrocytes. Two populations of proteoglycan monomer were observed in articular, epiphyseal, and in the resting zone of growth plate cartilage. These proteoglycans contained chondroitin sulfate glycosaminoglycan chains sulfated predominantly in the 4 position along with lesser amounts of chondroitin-6-sulfate and keratan sulfate. In the proliferative zone of the growth plate, chondrocytes synthesize one population of proteoglycan monomer which was significantly larger than monomer populations in articular, epiphyseal, or resting zone and this size increase could be attributed to an increase in its constituent chondroitin sulfate side chains. As these chondrocytes progress through their life cycle they continue to modify the structural characteristics of the aggrecan molecule they synthesize. Thus, in the hypertrophic region of the growth plate, the proteoglycan monomer is larger again than in the proliferative region. Variation in sulfation pattern on aggrecan chondroitin sulfate side chains is also observed in the hypertrophic region with an increasing proportion of unsulfated residues present, which may play a role in the initiation of mineralization. In addition, increasing amounts of the carbohydrate sequence recognized by monoclonal antibody 7-D-4 are observed in the hypertrophic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogden JA, Rosenberg LC (1988) Defining the growth plate. In: Uhthoff HK, Wiley JJ (eds) Behaviour of the growth plate. Raven Press Ltd, New York, p 1

    Google Scholar 

  2. Iannotti JP (1990) Growth plate physiology and pathology. Orthop Clin N Am 21:1–17

    CAS  Google Scholar 

  3. Howell DS, Dean DD (1992) The biology, chemistry and biochemistry of the mammalian growth plate. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven Press Ltd, New York, p 313

    Google Scholar 

  4. Cancedda R, Cancedda FD, Castagnola P (1995) Chondrocyte differentiation. Int Rev Cytol 159:265–358

    Article  PubMed  CAS  Google Scholar 

  5. Schmid TM, Linsenmayer TF (1985) Immunohistochemical localisation of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 100:598–605

    Article  PubMed  CAS  Google Scholar 

  6. Gibson GJ, Flint MH (1985) Type X collagen synthesis by chick sternal cartilage and its relationship to endochondral development. J Cell Biol 101:277–284

    Article  PubMed  CAS  Google Scholar 

  7. Alini M, Matsui Y, Dodge GR, Poole AR (1992)The extra-cellular matrix of cartilage in the growth plate before and during calcification: changes in composition and degradation of type II collagen

  8. Brown RA, Kayser M, McLaughlin B, Weiss JB (1993) Collagenase and gelatinase production by calcifying growth plate chondrocytes. Exp Cell Res 208:1–9

    Article  PubMed  CAS  Google Scholar 

  9. Wuthier RE (1988) Mechanism of matrix vesicle-mediated mineralisation of cartilage. ISI Atlas Sci Biochem 1:231–241

    CAS  Google Scholar 

  10. Bianco P, Fisher LW, Young MF, Termine JD, Robey PG (1990) Expression and localization of the two small proteoglycans biglycan and decorin in developing human skeletal and non-skeletal tissues. J Histochem Cytochem 38:1549–1563

    PubMed  CAS  Google Scholar 

  11. Dziewiatkowski DD, Majznerski LL (1985) Role of proteoglycans in endochondral ossification: inhibition of calcification. Calcif Tissue Int 37:560–564

    Article  PubMed  CAS  Google Scholar 

  12. Cuervo LA, Pita JC, Howell DS (1973) Inhibition of calcium phosphate mineral growth by proteoglycan aggregate fractions in a synthetic lymph. Calcif Tissue Res 13:1–10

    Article  PubMed  CAS  Google Scholar 

  13. Chen CC, Boskey AL, Rosenberg LC (1984) The inhibitory effect of cartilage proteoglycans on hydroxyapatite growth. Calcif Tissue Int 36:285–290

    Article  PubMed  CAS  Google Scholar 

  14. Lohmander S, Herpe A (1975) Proteoglycans of mineralizing rib and epiphyseal cartilage. Biochim Biophys Acta 404:93–109

    PubMed  CAS  Google Scholar 

  15. Franzen A, Heinegard D, Reiland S, Olsson SE (1982) Proteoglycans and calcification of cartilage in the femoral head epiphysis of the immature rat. J Bone Jt Surg 64A:558–566

    CAS  Google Scholar 

  16. Poole AR, Pidoux I, Rosenberg LC (1982) Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J Cell Biol 92:249–260

    Article  PubMed  CAS  Google Scholar 

  17. Poole AR, Reddi AH, Rosenberg LC (1982) Persistence of cartilage proteoglycan and link protein during matrix-induced endochondral bone development: an immunofluorescent study. Dev Biol 89:532–539

    Article  PubMed  CAS  Google Scholar 

  18. Scherft JP, Moskalewski S (1984) The amount of proteoglycan in cartilage matrix and the onset of mineralization. Metab Bone Dis Rel Res 5:195–203

    Article  CAS  Google Scholar 

  19. Matsui Y, Alini M, Webber C, Poole AR (1991) Characterization of aggregating proteoglycans from the proliferative, maturing, hypertrophic, and calcifying zones of cartilaginous physis. J Bone Jt Surg 73A: 1064–1074

    Google Scholar 

  20. Shepard N, Mitchell N (1985) Ultrastructural modifications of proteoglycans coincident with mineralization in local regions of rat growth plate. J Bone Jt Surg 67A:455–464

    Google Scholar 

  21. Heinegard D, Paulsson M (1984) Structure and metabolism of proteoglycans. In: Piez KA, Reddi AH (eds) Extracellular matrix biochemistry. Elsevier, New York, p 277

    Google Scholar 

  22. Carney SL, Bayliss MT, Collier JM, Muir H (1986) Electrophoresis of 35S-labelled proteoglycans on polyacrylamideagarose composite gels and their visualisation by fluorography. Anal Biochem 156:38–44

    Article  PubMed  CAS  Google Scholar 

  23. Caterson B, Calabro T, Hampton A (1987) Monoclonal antibodies as probes for elucidating proteoglycan structure and function. In: Wight TN, Mecham RP (eds) Biology of proteoglycans. Academic Press, San Diego, p 1

    Google Scholar 

  24. Caterson B, Griffin J, Mahmoodian F, Sorrell JM (1990) Monoclonal antibodies against chondroitin sulphate isomers: their use as probes for investigating proteoglycan metabolism. Biochem Soc Trans 18:820–823

    PubMed  CAS  Google Scholar 

  25. Byers S, Caterson B, Hopwood JJ, Foster BK (1992) Immunolocation analysis of glycosaminoglycans in the human growth plate. J Histochem Cytochem 40:275–282

    PubMed  CAS  Google Scholar 

  26. Sorrell JM, Carrino DA, Caplan AI (1993) Structural domains in chondroitin sulfate identified by anti-chondroitin sulfate monoclonal antibodies. Immunosequencing of chondroitin sulfates. Matrix 13:351–361

    PubMed  CAS  Google Scholar 

  27. Kimura JH, Shinomura T, Thonar EJ-MA (1987) Biosynthesis of cartilage proteoglycan and link protein. Methods Enzymol 144:372–393

    Article  PubMed  CAS  Google Scholar 

  28. Carney SL (1986) Proteoglycans. In: Chaplin MF, Kennedy JF (eds) Carbohydrate analysis: a practical approach. IRL Press, Washington DC, p 97

    Google Scholar 

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  30. Guo YC, Conrad HE (1988) Analysis of oligosaccharides from heparin by reversed-phase ion-pairing high-performance liquid chromatography. Anal Biochem 168:54–62

    Article  PubMed  CAS  Google Scholar 

  31. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54: 484–489

    Article  PubMed  CAS  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  33. Bayliss MT, Venn M, Maroudas, A, Ali SY (1983) Structure of proteoglycans from different layers of human articular cartilage. Biochem J 209:387–400

    PubMed  CAS  Google Scholar 

  34. Heinegard D, Wieslander J, Sheehan J, Paulsson M, Sommarin Y (1985) Separation and characterization of two populations of aggregating proteoglycans from cartilage. Biochem J 225:95–106

    PubMed  CAS  Google Scholar 

  35. Caterson B, Mahmoodian F, Sorrell JM, Hardingham TE, Bayliss MT, Carney SL, Ratcliffe A, Muir H (1990) Modulation of native chondroitin sulphate structure in tissue development and in disease. J Cell Sci 97:411–417

    PubMed  CAS  Google Scholar 

  36. Bayliss MT, Ali SY (1978) Age-related changes in the composition and structure of human articular-cartilage proteoglycans. Biochem J 176:683–693

    PubMed  CAS  Google Scholar 

  37. Buckwalter JA, Rosenberg LC, Ungar R (1987) Changes in proteoglycan aggregates during cartilage mineralization. Calcif Tissue Int 41:228–236

    Article  PubMed  CAS  Google Scholar 

  38. Campo RD, Romano JE (1986) Changes in cartilage proteoglycans associated with calcification. Calcif Tissue Int 39: 175–184

    Article  PubMed  CAS  Google Scholar 

  39. Axelsson I, Berman I, Pita JC (1983) Proteoglycans from rabbit articular and growth plate cartilage. Ultracentrifugation, gel chromatography, and electron microscopy. J Biol Chem 258:8915–8921

    PubMed  CAS  Google Scholar 

  40. Plaas AHK, Sandy JD (1993) A cartilage explant system for studies on aggrecan structure, biosynthesis and catabolism in discrete zones of the mammalian growth plate. Matrix 13: 135–147

    PubMed  CAS  Google Scholar 

  41. Kimata K, Okayama M, Ooira A, Suzuki S (1974) Heterogeneity of proteochondroitin sulfates produced by chondrocytes at different stages of cytodifferentiation. J Biol Chem 249: 1646–1653

    PubMed  CAS  Google Scholar 

  42. Reinholt FP, Engfeldt B, Heinegard D, Hjerpe A (1985) Proteoglycans and glycosaminoglycans of normal and strontium rachitic epiphyseal cartilage. Collagen Rel Res 5:41–53

    CAS  Google Scholar 

  43. Stocum DL, Davis RM, Leger M, Conrad HE (1979) Development of the tibiotarsus in the chick embryo: biosynthetic activities of histologically distinct regions. J Embryol Exp Morph 54:155–170

    PubMed  CAS  Google Scholar 

  44. Farquharson C, Whitehead CC, Loveridge N (1994) Alterations in glycosaminoglycan concentration and sulfation during chondrocyte maturation. Calcif Tissue Int 54:296–303

    Article  PubMed  CAS  Google Scholar 

  45. Matthews MB (1964) Structural factors in cation binding in anionic polysaccharides of connective tissue. Arch Biochem Biophys 104:394–404

    Article  Google Scholar 

  46. Hunter GK, Wong KS, Kim JJ (1988) Binding of calcium to glycosaminoglycans: an equilibrium dialysis study. Arch Biochem Biophys 260:161–167

    Article  PubMed  CAS  Google Scholar 

  47. Althoff J, Quint P, Krefting ER, Hohling HJ (1982) Morphological studies on the epiphyseal growth plate combined with biochemical and X-ray microprobe analyses. Histochemistry 74:541–552

    Article  PubMed  CAS  Google Scholar 

  48. Shapiro IM, Boyde A (1984) Microdissection: elemental analysis of the mineralizing growth cartilage of the normal and rachitic chick. Metab Bone Dis Rel Res 5:317–326

    Article  CAS  Google Scholar 

  49. Shaklee PN, Conrad HE (1985) Structural changes in the large proteoglycan in differentiating chondrocytes from the chick embryo tibiotarsus. J Biol Chem 260:16064–16067

    PubMed  CAS  Google Scholar 

  50. Sorrell JM, Lintala AM, Mahmoodian F, Caterson B (1988) Epitope-specific changes in chondroitin sulfate/dermatan sulfate proteoglycans as markers in the lymphopoietic and granulopoietic compartments of developing bursae of fabricius. J Immunol 140:4263–4270

    PubMed  CAS  Google Scholar 

  51. Sorrell JM, Mahmoodian F, Schafer IA, Davis B, Caterson B (1990) Identification of monoclonal antibodies that recognized novel epitopes in native chondroitin/dermatan glycosaminoglycan chains: their use in mapping functionally distinct domains of human skin. J Histochem Cytochem 38:393–402

    PubMed  CAS  Google Scholar 

  52. Carney SL, Billingham ME, Caterson B, Ratcliffe A, Bayliss MT, Hardingham TE, Muir H (1992) Changes in proteoglycan turnover in experimental canine osteoarthritic cartilage. Matrix 12:137–147

    PubMed  CAS  Google Scholar 

  53. Turnbull JE, Fernig DG, Ke Y, Wilkinson MC, Gallagher JT (1992) Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate. J Biol Chem 267:10337–10341

    PubMed  CAS  Google Scholar 

  54. Lindahl U, Thunberg L, Backstrom G, Riesenfeld J, Nordling K, Bjork I (1984) Extension and structural variability of the antithrombin-binding sequence in heparin. J Biol Chem 259: 12368–12376

    PubMed  CAS  Google Scholar 

  55. Maimone MM, Tollefsen DM (1990) Structure of a dermatan sulfate hexasaccharide that binds to heparin cofactor II with high affinity. J Biol Chem 265:18263–18271

    PubMed  CAS  Google Scholar 

  56. Hardingham TE, Fosang AJ (1992) Proteoglycans: many forms and many functions. FASEB 6:861–870

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byers, S., van Rooden, J.C. & Foster, B.K. Structural changes in the large proteoglycan, aggrecan, in different zones of the ovine growth plate. Calcif Tissue Int 60, 71–78 (1997). https://doi.org/10.1007/s002239900188

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002239900188

Key words

Navigation