Skip to main content
Log in

Stochastic areas, winding numbers and Hopf fibrations

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We define and study stochastic areas processes associated with Brownian motions on the complex symmetric spaces \(\mathbb {CP}^n\) and \(\mathbb {CH}^n\). The characteristic functions of those processes are computed and limit theorems are obtained. In the case \(n=1\), we also study windings of the Brownian motion on those spaces and compute the limit distributions. For \(\mathbb {CP}^n\) the geometry of the Hopf fibration plays a central role, whereas for \(\mathbb {CH}^n\) it is the anti-de Sitter fibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We will call north pole the point with complex coordinates \(z_1=0,\ldots , z_{n+1}=1\).

  2. We call 0 the point with inhomogeneous coordinates \(w_1=0,\ldots , w_{n}=0\).

  3. For Berger [5].

References

  1. Baudoin, F.: Stochastic Taylor expansions and heat kernels asymptotics. ESAIM Probab. Stat. 16, 453–478 (2012)

    Article  MATH  Google Scholar 

  2. Baudoin, F., Bonnefont, M.: The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds. Math. Zeit. 263(3), 647–672 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baudoin, F., Wang, J.: The subelliptic heat kernel on the CR sphere. Math. Z. 275(1–2), 135–150 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bérard-Bergery, L., Bourguignon, J.P.: Laplacians and Riemannian submersions with totally geodesic fibres. Ill. J. Math. 26(2), 181–200 (1982)

    MATH  MathSciNet  Google Scholar 

  5. Berger, M.: Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. Ann. Scuola Norm. Sup. Pisa 15, 179–246 (1961)

  6. Biane, P., Pitman, J., Yor, M.: Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. AMS 38(4), 435–465 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bismut, J.M.: The Atiyah–Singer theorems. J. Funct. Anal. 57, 56–99, 329–348 (1984)

  8. Bismut, J.M.: Formules de localisation et formules de Paul Lévy. Astérisque 157–158. Colloque Paul Lévy sur les processus stochastiques, pp. 37–58 (1988)

  9. Bonnefont, M.: The subelliptic heat kernel on SL(2, R) and on its universal covering: integral representations and some functional inequalities. Potential Anal. 36(2), 275–300 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Demni, N., Zani, M.: Large deviations for statistics of the Jacobi process. Stoch. Process. Appl. 119(2), 518–533 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duplantier, B.: Areas of planar Brownian curves. J. Phys. A Math. General 22(15), 3033–3048 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Friz, P., Victoir, N.: Multidimensional Dimensional Processes Seen as Rough Paths. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  13. Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math. 139(1–2), 95–153 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jakubowski, J., Wisniewolski, M.: On hyperbolic Bessel processes and beyond. Bernoulli 19(5B), 2437–2454 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lévy, P.: Le mouvement Brownien plan. Am. J. Math. 62, 487–550 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, X.M.: Limits of random differential equations on manifolds (2015). Probab. Theory Relat. Fields. arXiv:1501.04793

  17. Li, X.M.: Stochastic homogenisation on homogeneous spaces (2015). arXiv:1505.06772

  18. Pauwels, E.J., Rogers, L.C.G.: Skew-product decompositions of Brownian motions. Contemp. Math. 73, 237–262 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. 3rd edn. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 293. Springer, Berlin (1999)

  20. Warren, J., Yor, M. (1998) The Brownian burglar: conditioning Brownian motion by its local time process. Séminaire de Probabilités, XXXII, pp. 328–342. Lecture Notes in Math., 1686, Springer, Berlin (1998)

  21. Wang, J.: The subelliptic heat kernel on the anti-de sitter space. Potential Anal (2016). doi:10.1007/s11118-016-9561-2

  22. Watanabe, S.: Asymptotic windings of Brownian motion paths on Riemann surfaces. Acta Appl. Math. 63, 441–464 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Williams, D.: On a stopped Brownian motion formula of H.M. Taylor. Sem. Proba. X. (Lecture Notes in Mathematics, vol. 511) Springer, Berlin, pp. 235–239 (1976)

  24. Yor, M.: Remarques sur une formule de Paul Lévy. Sém. Proba. XIV. (Lecture Notes in Mathematics, vol. 784) Springer, Berlin, pp. 343–346 (1980)

  25. Yor, M.: Loi de l’indice du lacet Brownien, et distribution de Hartman–Watson. Probab. Theory Relat. Fields 53(1), 71–95 (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Baudoin.

Additional information

Dedicated to Marc Yor.

Fabrice Baudoin: Author supported in part by Grant NSF-DMS 15-11-328.

Appendix: Jacobi diffusions

Appendix: Jacobi diffusions

We collect here some well-known facts about Jacobi diffusions (see for instance [10] and the references therein for further details). The Jacobi diffusion is the diffusion on \([0,\pi /2]\) with generator

$$\begin{aligned} {\mathcal {L}}^{\alpha ,\beta }=\frac{1}{2} \frac{\partial ^2}{\partial r^2}+\left( \left( \alpha +\frac{1}{2}\right) \cot r-\left( \beta +\frac{1}{2}\right) \tan r\right) \frac{\partial }{\partial r}, \quad \alpha ,\beta >-1 \end{aligned}$$

defined up to the first time it hits the boundary \(\{ 0, \pi /2 \}\).

The point 0 is:

  • A regular point for \(-1<\alpha <0\);

  • An entrance point for \(\alpha \ge 0\).

Similarly, the point \(\pi /2\) is:

  • A regular point for \(-1<\beta <0\);

  • An entrance point for \(\beta \ge 0\).

If r is a Jacobi diffusion with generator \({\mathcal {L}}^{\alpha ,\beta }\), then it is easily seen that \(\rho =\cos 2r\) is a diffusion with generator \(2{\mathcal {G}}^{\alpha ,\beta }\) where,

$$\begin{aligned} {\mathcal {G}}^{\alpha ,\beta }=(1-\rho ^2)\frac{\partial ^2}{\partial \rho ^2}-\left( (\alpha +\beta +2)\rho +\alpha -\beta \right) \frac{\partial }{\partial \rho } \end{aligned}$$
(4.2)

The spectrum and eigenfunctions of \({\mathcal {G}}^{\alpha ,\beta }\) are known. Let us denote by \(P_m^{\alpha ,\beta }(x)\), \(m\in {\mathbb {Z}}_{\ge 0}\) the Jacobi polynomials given by

$$\begin{aligned} P_m^{\alpha ,\beta }(x)=\frac{(-1)^m}{2^mm!(1-x)^{\alpha }(1+x)^\beta }\frac{d^m}{dx^m}((1-x)^{\alpha +m}(1+x)^{\beta +m}). \end{aligned}$$

It is known that \(\{P_m^{\alpha ,\beta }(x)\}\) is orthonormal in \(L^2([-1,1], 2^{-\alpha -\beta -1}(1+x)^{\beta }(1-x)^{\alpha }dx)\) and satisfies

$$\begin{aligned} {\mathcal {G}}^{\alpha ,\beta }P_m^{\alpha ,\beta }(x)=-m(m+\alpha +\beta +1)P_m^{\alpha ,\beta }(x). \end{aligned}$$

If we denote by \(p^{\alpha ,\beta }_t(x,y)\) transition density with respect to the Lebesgue measure of the diffusion \(\rho \) starting from \(x \in (-1,1)\), then we have

$$\begin{aligned} p^{\alpha ,\beta }_t(x,y)&=2^{-\alpha -\beta -1}(1+y)^{\beta }(1-y)^{\alpha }\sum _{m=0}^{+\infty } (2m+\alpha +\beta +1)\\ {}&\qquad \times \frac{\Gamma (m+\alpha +\beta +1)\Gamma (m+1)}{\Gamma (m+\alpha +1)\Gamma (m+\beta +1)} e^{-2m(m+\alpha +\beta +1)t}P_m^{\alpha ,\beta }(x)P_m^{\alpha ,\beta }(y). \end{aligned}$$

In particular, when 1 is an entrance point, that is \(\alpha \ge 0\), we obtain

$$\begin{aligned} p^{\alpha ,\beta }_t(1,y)&=2^{-\alpha -\beta -1}(1+y)^{\beta }(1-y)^{\alpha } \sum _{m=0}^{+\infty } (2m+\alpha +\beta +1)\\&\qquad \times \frac{\Gamma (m+\alpha +\beta +1)}{\Gamma (m+\beta +1)\Gamma (\alpha +1)} e^{-2m(m+\alpha +\beta +1)t}P_m^{\alpha ,\beta }(y). \end{aligned}$$

By denoting \(q_t^{\alpha ,\beta }\) the transition density of r, we obtain then for \(\alpha ,\beta \ge 0\),

$$\begin{aligned} q^{\alpha ,\beta }_t(r_0,r)&=2(\cos r)^{2\beta +1} (\sin r)^{2\alpha +1}\\&\qquad \cdot \sum _{m=0}^{+\infty } (2m+\alpha +\beta +1)\\&\qquad \times \frac{\Gamma (m+\alpha +\beta +1)\Gamma (m+1)}{\Gamma (m+\alpha +1)\Gamma (m+\beta +1)}\\&\quad e^{-2m(m+\alpha +\beta +1)t}P_m^{\alpha ,\beta }(\cos 2r_0)P_m^{\alpha ,\beta }(\cos 2r). \end{aligned}$$

and

$$\begin{aligned} q^{\alpha ,\beta }_t(0,r)&=2(\cos r)^{2\beta +1} (\sin r)^{2\alpha +1} \sum _{m=0}^{+\infty } (2m+\alpha +\beta +1)\\&\qquad \times \frac{\Gamma (m+\alpha +\beta +1)}{\Gamma (m+\beta +1)\Gamma (\alpha +1)} e^{-2m(m+\alpha +\beta +1)t}P_m^{\alpha ,\beta }(\cos 2r). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudoin, F., Wang, J. Stochastic areas, winding numbers and Hopf fibrations. Probab. Theory Relat. Fields 169, 977–1005 (2017). https://doi.org/10.1007/s00440-016-0745-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0745-x

Mathematics Subject Classification

Navigation