Skip to main content
Log in

An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Even if substantial heritability has been reported and candidate genes have been identified extensively, all known marker associations explain only a small proportion of the phenotypic variance of developmental dyslexia (DD) and related quantitative phenotypes. Gene-by-gene interaction (also known as “epistasis”—G × G) triggers a non-additive effect of genes at different loci and should be taken into account in explaining part of the missing heritability of this complex trait. We assessed potential G × G interactions among five DD candidate genes, i.e., DYX1C1, DCDC2, KIAA0319, ROBO1, and GRIN2B, upon DD-related neuropsychological phenotypes in 493 nuclear families with DD, by implementing two complementary regression-based approaches: (1) a general linear model equation whereby the trait is predicted by the main effect of the number of rare alleles of the two genes and by the effect of the interaction between them, and (2) a family-based association test to detect G × G interactions between two unlinked markers by splitting up the association effect into a between- and a within-family genetic orthogonal components. After applying 500,000 permutations and correcting for multiple testing, both methods show that G × G effects between markers within the DYX1C1, KIAA0319/TTRAP, and GRIN2B genes lower the memory letters composite z-score of on average 0.55 standard deviation. We provided initial evidence that the effects of familial transmission of synergistic interactions between genetic risk variants can be exploited in the study of the etiology of DD, explain part of its missing heritability, and assist in designing customized charts of individualized neurocognitive impairments in complex disorders, such as DD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akashi K, Kakizaki T, Kamiya H et al (2009) NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. J Neurosci 29:10869–10882

    Article  CAS  PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatry Press, Washington, DC

    Google Scholar 

  • Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4:829–839

    Article  CAS  PubMed  Google Scholar 

  • Boyle AP, Hong EL, Hariharan M et al (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res 22:1790–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Che A, Girgenti MJ, Loturco J (2014) The dyslexia-associated gene Dcdc2 is required for spike-timing precision in mouse neocortex. Biol Psychiatry 76:387–396

    Article  CAS  PubMed  Google Scholar 

  • Cornoldi C, Colpo G (1995) Nuove Prove Di Lettura MT Per La Scuola Media Inferiore. Organizzazioni Speciali, Firenze

    Google Scholar 

  • Cornoldi C, Colpo G (1998) Prove Di Lettura MT Per La Scuola Elementare—2. Organizzazioni Speciali, Firenze

    Google Scholar 

  • Couto JM, Livne-Bar I, Huang K et al (2010) Association of reading disabilities with regions marked by acetylated H3 histones in KIAA0319. Am J Med Genet B Neuropsychiatr Genet 153B:447–462

    CAS  PubMed  Google Scholar 

  • Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  CAS  PubMed  Google Scholar 

  • Currier TA, Etchegaray MA, Haight JL et al (2011) The effects of embryonic knockdown of the candidate dyslexia susceptibility gene homologue Dyx1c1 on the distribution of GABAergic neurons in the cerebral cortex. Neuroscience 172:535–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dahdouh F, Anthoni H, Tapia-Paez I et al (2009) Further evidence for DYX1C1 as a susceptibility factor for dyslexia. Psychiatr Genet 19:59–63

    Article  PubMed  Google Scholar 

  • De Lobel L, Thijs L, Kouznetsova T et al (2012) A family-based association test to detect gene-gene interactions in the presence of linkage. Eur J Hum Genet 20:973–980

    Article  PubMed Central  PubMed  Google Scholar 

  • Dennis MY, Paracchini S, Scerri TS et al (2009) A common variant associated with dyslexia reduces expression of the KIAA0319 gene. PLoS Genet 5:e1000436

    Article  PubMed Central  PubMed  Google Scholar 

  • Dhawan P, Richmond A (2002) A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 277:7920–7928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El-Bakri NK, Islam A, Zhu S et al (2004) Effects of estrogen and progesterone treatment on rat hippocampal NMDA receptors: relationship to morris water maze performance. J Cell Mol Med 8:537–544

    Article  CAS  PubMed  Google Scholar 

  • Fisher R (1918) The correlation between relatives on the supposition of mendelian inheritance. Trans R Soc Edinb 52:399–433

    Article  Google Scholar 

  • Fisher SE, DeFries JC (2002) Developmental dyslexia: genetic dissection of a complex cognitive trait. Nat Rev Neurosci 3:767–780

    Article  CAS  PubMed  Google Scholar 

  • Fitzmaurice GM, Laird NM, Ware JH (2011) Applied longitudinal analysis, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Franceschini S, Gori S, Ruffino M et al (2012) A causal link between visual spatial attention and reading acquisition. Curr Biol 22:814–819

    Article  CAS  PubMed  Google Scholar 

  • Franceschini S, Gori S, Ruffino M et al (2013) Action video games make dyslexic children read better. Curr Biol 23:462–466

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM, Kemper TL (1979) Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Ann Neurol 6:94–100

    Article  CAS  PubMed  Google Scholar 

  • Galaburda AM, Sherman GF, Rosen GD et al (1985) Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol 18:222–233

    Article  CAS  PubMed  Google Scholar 

  • Gori S, Facoetti A (2014) Perceptual learning as a possible new approach for remediation and prevention of developmental dyslexia. Vis Res 99:78–87

    Article  PubMed  Google Scholar 

  • Hallgren B (1950) Specific dyslexia (congenital word-blindness); a clinical and genetic study. Acta Psychiatr Neurol Suppl 65:1–287

    CAS  PubMed  Google Scholar 

  • Hari R, Renvall H (2001) Impaired processing of rapid stimulus sequences in dyslexia. Trends Cogn Sci 5:525–532

    Article  PubMed  Google Scholar 

  • Harold D, Paracchini S, Scerri T et al (2006) Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Mol Psychiatry 11:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Ito J, Araki A, Tanaka H et al (1997) Intellectual status of children with cerebral palsy after elementary education. Pediatr Rehabil 1:199–206

    CAS  PubMed  Google Scholar 

  • Kere J (2014) The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochem Biophys Res Commun 452:236–243

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Cochran BH (2001) JAK2 activates TFII-I and regulates its interaction with extracellular signal-regulated kinase. Mol Cell Biol 21:3387–3397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MJ, Dunah AW, Wang YT et al (2005) Differential roles of NR2A- and NR2B-containing NMDA receptors in ras-ERK signaling and AMPA receptor trafficking. Neuron 46:745–760

    Article  CAS  PubMed  Google Scholar 

  • Kirsten H, Wilcke A, Ligges C et al (2012) Association study of a functional genetic variant in KIAA0319 in german dyslexics. Psychiatr Genet 22:216–217

    Article  PubMed  Google Scholar 

  • Lange C, DeMeo D, Silverman EK et al (2004) PBAT: tools for family-based association studies. Am J Hum Genet 74:367–369

    Article  PubMed Central  PubMed  Google Scholar 

  • Lim CK, Ho CS, Chou CH et al (2011) Association of the rs3743205 variant of DYX1C1 with dyslexia in chinese children. Behav Brain Funct 7:16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lou XY, Chen GB, Yan L et al (2008) A combinatorial approach to detecting gene–gene and gene–environment interactions in family studies. Am J Hum Genet 83:457–467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luciano M, Lind PA, Duffy DL et al (2007) A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability. Biol Psychiatry 62:811–817

    Article  CAS  PubMed  Google Scholar 

  • Ludwig KU, Schumacher J, Schulte-Körne G et al (2008) Investigation of the DCDC2 intron 2 deletion/compound short tandem repeat polymorphism in a large german dyslexia sample. Psychiatr Genet 18:310–312

    Article  PubMed  Google Scholar 

  • Ludwig KU, Roeske D, Herms S et al (2009) Variation in GRIN2B contributes to weak performance in verbal short-term memory in children with dyslexia. Am J Med Genet B Neuropsychiatr Genet 153:503–511

    Google Scholar 

  • Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marino C, Giorda R, Vanzin L et al (2003) No evidence for association and linkage disequilibrium between dyslexia and markers of four dopamine-related genes. Eur Child Adolesc Psychiatry 12:198–202

    Article  CAS  PubMed  Google Scholar 

  • Marino C, Giorda R, Vanzin L et al (2004) A locus on 15q15-15qter influences dyslexia: further support from a transmission/disequilibrium study in an italian speaking population. J Med Genet 41:42–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marino C, Giorda R, Lorusso ML et al (2005) A family-based association study does not support DYX1C1 on 15q21.3 as a candidate gene in developmental dyslexia. Eur J Hum Genet 13:491–499

    Article  CAS  PubMed  Google Scholar 

  • Marino C, Citterio A, Giorda R et al (2007) Association of short-term memory with a variant within DYX1C1 in developmental dyslexia. Genes Brain Behav 6:640–646

    Article  CAS  PubMed  Google Scholar 

  • Marino C, Mascheretti S, Riva V et al (2011) Pleiotropic effects of DCDC2 and DYX1C1 genes on language and mathematics traits in nuclear families of developmental dyslexia. Behav Genet 41:67–76

    Article  PubMed Central  PubMed  Google Scholar 

  • Marino C, Meng H, Mascheretti S et al (2012) DCDC2 genetic variants and susceptibility to developmental dyslexia. Psychiatr Genet 22:25–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mascheretti S, Facoetti A, Giorda R et al (2014a) GRIN2B mediates susceptibility to IQ and cognitive impairments in developmental dyslexia. Psychiatr Genet. doi:10.1097/YPG.0000000000000068

    Google Scholar 

  • Mascheretti S, Riva V, Giorda R et al (2014b) KIAA0319 and ROBO1: evidence on association with reading and pleiotropic effects on language and mathematics abilities in developmental dyslexia. J Hum Genet 59:189–197

    Article  CAS  PubMed  Google Scholar 

  • Massinen S, Tammimies K, Tapia-Paez I et al (2009) Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia. Hum Mol Genet 18:2802–2812

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Smith SD, Hager K et al (2005) DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci USA 102:17053–17058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moffitt TE, Caspi A, Rutter M (2005) Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry 62:473–481

    Article  CAS  PubMed  Google Scholar 

  • Moore JH, Williams SM (2009) Epistasis and its implications for personal genetics. Am J Hum Genet 85:309–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peschansky VJ, Burbridge TJ, Volz AJ et al (2010) The effect of variation in expression of the candidate dyslexia susceptibility gene homolog Kiaa0319 on neuronal migration and dendritic morphology in the rat. Cereb Cortex 20:884–897

    Article  PubMed Central  PubMed  Google Scholar 

  • Plomin R (2013) Child development and molecular genetics: 14 years later. Child Dev 84:104–120

    Article  PubMed Central  PubMed  Google Scholar 

  • Plomin R, Kovas Y (2005) Generalist genes and learning disabilities. Psychol Bull 131:592–617

    Article  PubMed  Google Scholar 

  • Plomin R, DeFries JC, McClearn GE et al (2008) Behavioral genetics, 5th edn. Worth Publisher, New York

    Google Scholar 

  • Poelmans G, Buitelaar JK, Pauls DL et al (2011) A theoretical molecular network for dyslexia: integrating available genetic findings. Mol Psychiatry 16:365–382

    Article  CAS  PubMed  Google Scholar 

  • Poon MW, Tsang WH, Chan SO et al (2011) Dyslexia-associated kiaa0319-like protein interacts with axon guidance receptor nogo receptor 1. Cell Mol Neurobiol 31:27–35

    Article  CAS  PubMed  Google Scholar 

  • Powers NR, Eicher JD, Butter F et al (2013) Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment. Am J Hum Genet 93:19–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds CR, Bigler ED (1994) Test of memory and learning. Erickson, Trento

    Google Scholar 

  • Rosen GD, Bai J, Wang Y et al (2007) Disruption of neuronal migration by RNAi of Dyx1c1 results in neocortical and hippocampal malformations. Cereb Cortex 17:2562–2572

    Article  PubMed Central  PubMed  Google Scholar 

  • Sartori G, Job R, Tressoldi PE (1995) Batteria per la valutazione della dislessia e della disortografia evolutiva. Organizzazioni Speciali, Firenze

    Google Scholar 

  • Scerri TS, Schulte-Körne G (2010) Genetics of developmental dyslexia. Eur Child Adolesc Psychiatry 19:179–197

    Article  PubMed  Google Scholar 

  • Schumacher J, Hoffmann P, Schmal C et al (2007) Genetics of dyslexia: the evolving landscape. J Med Genet 44:289–297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schumacher J, Konig IR, Schroder T et al (2008) Further evidence for a susceptibility locus contributing to reading disability on chromosome 15q15-q21. Psychiatr Genet 18:137–142

    Article  PubMed  Google Scholar 

  • Swanson HL, Xinhua Z, Jerman O (2009) Working memory, short-term memory, and reading disabilities: a selective meta-analysis of the literature. J Learn Disabil 42:260–287

    Article  PubMed  Google Scholar 

  • Szalkowski CE, Hinman JR, Threlkeld SW et al (2011) Persistent spatial working memory deficits in rats following in utero RNAi of Dyx1c1. Genes Brain Behav 10:244–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szalkowski CE, Fiondella CG, Galaburda AM et al (2012) Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene Kiaa0319. Int J Dev Neurosci 30:293–302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szalkowski CE, Booker AB, Truong DT et al (2013) Knockdown of the candidate dyslexia susceptibility gene homolog dyx1c1 in rodents: effects on auditory processing, visual attention, and cortical and thalamic anatomy. Dev Neurosci 35:50–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taipale M, Kaminen N, Nopola-Hemmi J et al (2003) A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proc Natl Acad Sci USA 100:11553–11558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Q, Gandhoke R, Burritt A et al (1999) High-affinity interaction of (des-tyrosyl)dynorphin A(2-17) with NMDA receptors. J Pharmacol Exp Ther 291:760–765

    CAS  PubMed  Google Scholar 

  • Tran C, Wigg KG, Zhang K et al (2014) Association of the ROBO1 gene with reading disabilities in a family-based analysis. Genes Brain Behav 13:430–438

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen M, van den Berg SM, Peper JS et al (2009) Genetic covariance structure of reading, intelligence and memory in children. Behav Genet 39:245–254

    Article  PubMed  Google Scholar 

  • van Steen K (2012) Travelling the world of gene–gene interactions. Brief Bioinform 13:1–19

    Article  Google Scholar 

  • Velayos-Baeza A, Levecque C, Kobayashi K et al (2010) The dyslexia-associated KIAA0319 protein undergoes proteolytic processing with {gamma}-secretase-independent intramembrane cleavage. J Biol Chem 285:40148–40162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venkatesh SK, Siddaiah A, Padakannaya P et al (2013) Lack of association between genetic polymorphisms in ROBO1, MRPL19/C2ORF3 and THEM2 with developmental dyslexia. Gene 529:215–219

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh SK, Siddaiah A, Padakannaya P et al (2014) Association of SNPs of DYX1C1 with developmental dyslexia in an indian population. Psychiatr Genet 24:10–20

    Article  CAS  PubMed  Google Scholar 

  • Vidyasagar TR, Pammer K (2010) Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn Sci 14:57–63

    Article  PubMed  Google Scholar 

  • Wang Y, Paramasivam M, Thomas A et al (2006) DYX1C1 functions in neuronal migration in developing neocortex. Neuroscience 143:515–522

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Cui Z, Zeng Q et al (2009) Genetic enhancement of memory and long-term potentiation but not CA1 long-term depression in NR2B transgenic rats. PLoS One 4:e7486

    Article  PubMed Central  PubMed  Google Scholar 

  • Wechsler D (1981) WISC-R Wechsler intelligence scale for children, revised. Organizzazioni Speciali, Firenze

    Google Scholar 

  • Wechsler D (2006) WISC-III Wechsler intelligence scale for children, 3rd edn. Organizzazioni Speciali, Firenze

    Google Scholar 

  • Yang J, Benyamin B, McEvoy BP et al (2011a) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569

    Article  Google Scholar 

  • Yang J, Lee SH, Goddard ME et al (2011b) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuk O, Hechter E, Sunyaev SR et al (2009) The mistery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109:1193–1198

    Article  Google Scholar 

Download references

Acknowledgments

We thank all the parents and children who took part in this study. We really thank Dr. Chantal Mérette for her helpful suggestions. We express our gratitude to Dr. Maria Rosaria Cellino, Lisa Meneghello and Elisabetta Furioni for helping in data collection. We are grateful to two anonymous reviewers for having provided valuable comments. Finally, we thank Harold Gaboury for English text revision. All authors reported no conflicts of interest. Dr. Alexandre Bureau was supported by a research fellowship from the Fonds de recherche du Québec—Santé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mascheretti.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascheretti, S., Bureau, A., Trezzi, V. et al. An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Hum Genet 134, 749–760 (2015). https://doi.org/10.1007/s00439-015-1555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-015-1555-4

Keywords

Navigation