Skip to main content
Log in

Molecular genetic epidemiology of human diseases: from patterns to predictions

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Databases of disease-associated or disease-causing mutations allow the study, not only of the molecular mechanisms underlying the primary lesions at the DNA level, but also of the functional consequences of mutation at the phenotypic level. The Human Gene Mutation Database (HGMD) and the bioinformatics analyses of its content provide an illustrative example of this indirect approach to molecular genetic epidemiology. In fact, the Bayesian type of reasoning underlying previous scientific analyses of HGMD data is also reflected in current software tools used to predict the likely disease relevance of a newly detected genetic variant. After a brief resume of the past scientific utility of HGMD, we, therefore, shortly review three representative and commonly used examples of these tools, namely SIFT, PolyPhen-2 and NNSplice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball EV, Stenson PD, Abeysinghe SS, Krawczak M, Cooper DN, Chuzhanova NA (2005) Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat 26:205–213

    Article  CAS  PubMed  Google Scholar 

  • Baralle D, Lucassen A, Buratti E (2009) Missed threads. The impact of pre-mRNA splicing defects on clinical practice. EMBO Rep 10:810–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzer S (1961) On the topography of the genetic fine structure. Proc Natl Acad Sci USA 47:403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DN, Krawczak M (1990) The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet 85:55–74

    Article  CAS  PubMed  Google Scholar 

  • Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD, Chuzhanova N, Krawczak M, Kehrer-Sawatzki H, Stenson PD (2010) Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 31:631–655

    Article  CAS  PubMed  Google Scholar 

  • Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM (2011) On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 32:1075–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frousios K, Iliopoulos CS, Schlitt T, Simpson MA (2013) Predicting the functional consequences of non-synonymous DNA sequence variants—evaluation of bioinformatics tools and development of a consensus strategy. Genomics 102:223–228

    Article  CAS  PubMed  Google Scholar 

  • Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864

    Article  CAS  PubMed  Google Scholar 

  • Johnston JJ, Biesecker LG (2013) Databases of genomic variation and phenotypes: existing resources and future needs. Hum Mol Genet 22(R1):R27–R31

    Article  CAS  PubMed  Google Scholar 

  • Krawczak M, Cooper DN (1991) Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet 86:425–441

    Article  CAS  PubMed  Google Scholar 

  • Krawczak M, Reiß J, Cooper DN (1992) The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 90:41–54

    Article  CAS  PubMed  Google Scholar 

  • Krawczak M, Ball EV, Cooper DN (1998) Neighboring nucleotide effects on the rates of germline single base-pair substitution in human genes. Am J Hum Genet 63:474–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok SC, Chan SJ, Rubenstein AH, Poucher R, Steiner DF (1981) Loss of a restriction endonuclease cleavage site in the gene of a structurally abnormal human insulin. Biochem Biophys Res Commun 98:844–849

    CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61–80

    Article  CAS  PubMed  Google Scholar 

  • Olatubosun A, Väliaho J, Härkönen J, Thusberg J, Vihinen M (2012) PON-P: integrated predictor for pathogenicity of missense variants. Hum Mutat 33:1166–1174

    Article  CAS  PubMed  Google Scholar 

  • Peterson TA, Doughty E, Kann MG (2013) Towards precision medicine: advances in computational approaches for the analysis of human variants. J Mol Biol 425:4047–4063

    Article  CAS  PubMed  Google Scholar 

  • Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. J Comp Biol 4:311–323

    Article  CAS  Google Scholar 

  • Stenson PD, Mort M, Ball EV, Shaw K, Phillips AD, Cooper DN (2013) The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet (in press). doi:10.1007/s00439-013-1358-4

  • Thusberg J, Vihinen M (2009) Pathogenic or not? And if so, then how? Studying the effects of missense mutations using bioinformatics methods. Hum Mutat 30:703–714

    Article  CAS  PubMed  Google Scholar 

  • Thusberg J, Olatubosun A, Vihinen M (2011) Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat 32:358–368

    Article  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Jiang R (2013) Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases. ScientificWorldJournal 2013:675851

Download references

Acknowledgments

The authors are most grateful to Amke Caliebe, Kiel, for her support and for helpful comments of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krawczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knecht, C., Krawczak, M. Molecular genetic epidemiology of human diseases: from patterns to predictions. Hum Genet 133, 425–430 (2014). https://doi.org/10.1007/s00439-013-1396-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1396-y

Keywords

Navigation