Skip to main content

Advertisement

Log in

Selection and mutation in the “new” genetics: an emerging hypothesis

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

It has been anticipated that new, much more sensitive, next generation sequencing (NGS) techniques, using massively parallel sequencing, will likely provide radical insights into the genetics of multifactorial diseases. While NGS has been used initially to analyze individual human genomes, and has revealed considerable differences between healthy individuals, we have used NGS to examine genetic variation within individuals, by sequencing tissues “in depth”, i.e., oversequencing many thousands of times. Initial studies have revealed intra-tissue genetic heterogeneity, in the form of multiple variants of a single gene that exist as distinct “majority and “minority” variants. This highly specialized form of somatic mosaicism has been found within both cancer and normal tissues. If such genetic variation within individual tissues is widespread, it will need to be considered as a significant factor in the ontogeny of many multifactorial diseases, including cancer. The discovery of majority and minority gene variants and the resulting somatic cell heterogeneity in both normal and diseased tissues suggests that selection, as opposed to mutation, might be the critical event in disease ontogeny. We, therefore, are proposing a hypothesis to explain multifactorial disease ontogeny in which pre-existing multiple somatic gene variants, which may arise at a very early stage of tissue development, are eventually selected due to changes in tissue microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn SM, Kim TH, Lee S, Kim D, Ghang H, Kim D-S, Kim B-H, Kim S-Y, Kim W-Y, Kim C, Park D, Lee YS, Kim S, Reja R, Jho S, Kim CG, Cha J-Y, Kim K-H, Lee B, Bhak J, Kim S-J (2009) The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res 19:1622–1629

    Article  CAS  PubMed  Google Scholar 

  • Alvarado C, Beitel LK, Sircar K, Aprikian A, Trifiro M, Gottlieb B (2005) Somatic mosaicism and cancer: a micro-genetic examination into the role of the androgen receptor gene in prostate cancer. Cancer Res 65:8514–8518

    Article  CAS  PubMed  Google Scholar 

  • Ayala FJ (2009) One hundred years without Darwin are enough! Genome Res 19:693–699

    Article  CAS  PubMed  Google Scholar 

  • Bielas JH, Loeb KR, Rubin BP, True LD, Loeb LA (2006) Human cancers express a mutator phenotype. Proc Natl Acad Sci USA 103:18238–18242

    Article  CAS  PubMed  Google Scholar 

  • Bissell MJ, LaBarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23

    CAS  PubMed  Google Scholar 

  • Brulde B (2001) The goals of medicine. Towards a unified theory. Health Care Anal 9:1–13

    Article  CAS  PubMed  Google Scholar 

  • Campbell PJ, Pleasance ER, Stephens PJ, Dicks E, Rance R, Goodhead I, Follows GA, Green AR, Futreal PA, Stratton MR (2008) Subclonal phylogenetic structures in cancer revealed by ultra-deep pyrosequencing. PNAS 105:13081–13086

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Jones TD, Pan C-X, Barbarin A, Eble JN, Koch MO (2005) Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens. Mod Pathol 18:1022–1026

    Article  PubMed  Google Scholar 

  • Davis BR, Candotti F (2009) Revertant somatic mosaicism in the Wiskott-Aldrich syndrome. Immunol Res 44:127–131

    Article  PubMed  Google Scholar 

  • Drake JW (2007) Too many mutants with multiple mutations. Crit Rev Biochem Mol Biol 42:247–258

    Article  CAS  PubMed  Google Scholar 

  • Eldar A, Chary VK, Xenopoulos P, Fontes ME, Loson O, Dworkin J, Piggot PJ, Elowitz MB (2009) Partial penetrance facilitates developmental evolution in bacteria. Nature 460:510–515

    CAS  PubMed  Google Scholar 

  • Erickson RP (2003) Somatic gene mutation and human disease other than cancer. Mutat Res 543:125–136

    Article  CAS  PubMed  Google Scholar 

  • Frank SA (2010) Somatic evolutionary genomics: Mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. PNAS (in press)

  • Gluckman P, Beedle A, Hanson M (2009) Principles of evolutionary medicine. Oxford University Press, Oxford

    Google Scholar 

  • Gottlieb B, Beitel LK, Trifiro M (2001) Somatic mosaicism and variable expressivity. Trends Genet 17:79–82

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb B, Beitel LK, Wu JH, Trifiro M (2004) The androgen receptor gene mutations database: 2004 update. Hum Mutat 23:527–533

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb B, Beitel LK, Trifiro M (2007) Will knowledge of human genome variation result in changing cancer paradigms? Bioessays 29:678–685

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb B, Chalifour LE, Mitmaker B, Sheiner N, Obrand D, Abraham C, Meilleur M, Sugahara T, Bkaily G, Schweitzer M (2009) BAK1 gene variations and abdominal aortic aneurysms. Hum Mutat 30:1043–1047

    Article  CAS  PubMed  Google Scholar 

  • Haber DA, Settleman J (2007) Drivers and passengers. Nature 446:145–146

    Article  CAS  PubMed  Google Scholar 

  • Happle R (2009) What is paradominant inheritance? J Med Genet 46:648

    Article  CAS  PubMed  Google Scholar 

  • Harismendy O, Ng PC, Strausberg RL, Wang X, Stockwell TB, Beeson KY, Schork NJ, Murray SS, Toplo EJ, Levy S, Frazer KA (2009) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome Biol 10:R32

    Article  PubMed  Google Scholar 

  • Hutchinson MJ, Booth D (2004) Much ado about nothing…so far? J Evol Biol 17:1184–1186

    Article  Google Scholar 

  • Irwin JA, Saunier JL, Niederstatter H, Strous KM, Sturk KA, Diegoli TM, Brandstatter A, Parson W, Parsons TJ (2009) Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples. J Mol Evol 68:516–527

    Article  CAS  PubMed  Google Scholar 

  • Kazemi-Esfarjani P, Trifiro MA, Pinsky L (1995) Evidence for a repressive function of the long polyglutamine tract in the human androgen receptor: possible pathogenetic relevance for the (CAG) n -expanded neuronopathies. Hum Mol Genet 4:523–527

    Article  CAS  PubMed  Google Scholar 

  • Laloi-Michelin M et al (2009) The clinical variability of maternally inherited diabetes and deafness is associated with the degree of heteroplasmy in blood leukocytes. J Clin Endocrinol Metab 94:3025–3030

    Article  CAS  PubMed  Google Scholar 

  • Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Lee PH, Shatkay H (2008) F-SNP: computationally predicted functional SNPs for disease association studies. Nucl Acids Res 36:D820–D824

    Article  CAS  PubMed  Google Scholar 

  • Losi L, Baisse B, Bouzourene H, Benhattar J (2005) Evolution of intratumoral genetic heterogeneity during colorectal cancer progression. Carcinogenesis 26:916–922

    Article  CAS  PubMed  Google Scholar 

  • Lutskiy MI, Park JY, Renold SK, Remold-O’Donnell E (2008) Evolution of highly polymorphic T cell populations in siblings with the Wiskott-Aldrich syndrome. PLoS One 3:e3444

    Article  PubMed  Google Scholar 

  • Marva F, Lopez-Rodas V, Rouco M, Navarro M, Toro FJ, Costas E, Flores-Moya A (2009) Adaptation of green microalgae to the herbicides simazine and diquat as result of pre-selective mutations. Aquat Toxicol. doi:10.1016/j.aquatox.2009.10.009

  • McKernan KJ et al (2009) Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res 19:1527–1541

    Article  CAS  PubMed  Google Scholar 

  • Molderings GJ, Kolck UW, Scheurlin C, Bruss M, Homann J, Von Kugelgen I (2007) Multiple novel alterations in Kit tyrosine kinase in patients with gastrointestinally pronounced systemic mast cell activation disorder. Scan J Gasteroenterol 42:1045–1053

    Article  CAS  Google Scholar 

  • Pannell JR, Eppley SM (2004) Intraorganismal genetic heterogeneity: is it a useful concept? J Evol Biol 17:1180–1181

    Article  CAS  PubMed  Google Scholar 

  • Pineda-Krch M, Lehtila K (2004) Costs and benefits of genetic heterogeneity within organisms. J Evol Biol 17:1167–1177

    Article  CAS  PubMed  Google Scholar 

  • Pleasance ED et al (2009a) A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. doi:10.1038/nature08629

  • Pleasance ED et al (2009b) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. doi:10.1038/nature08658

  • Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotech 27(9):847–852

    Google Scholar 

  • Rohlin A, Wenersson J, Engwall Y, Wiklund L, Bjork J, Nordling M (2009) Parallel sequencing used in detection of mosaic mutations: comparison with four diagnostic DNA screening techniques. Hum Mutat 30:1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Sale JE, Batters C, Edmunds CE, Philips LG, Simpson LJ, Szuts D (2009) Timing matters: error-prone gap filling and translesion synthesis in immunoglobin gene hypermutation. Philos Trans R Soc B 364:595–603

    Article  CAS  Google Scholar 

  • Salk JJ, Fox EJ, Loeb LA (2010) Mutational heterogeneity in human cancers: origin and consequences. Annu Rev Path Mech Dis 5:51–75

    Article  CAS  Google Scholar 

  • Sircar K, Gottlieb B, Alvarado C, Aprikian A, Beitel LK, Alam-Fahmy M, Begin L, Trifiro M (2007) Androgen receptor CAG repeat length contraction in diseased and non-diseased prostatic tissues. Prostate Cancer Prostatic Dis 10:360–368

    Article  CAS  PubMed  Google Scholar 

  • Steinkamp MP, O’Mahoney OA, Brogley M, Rehman H, LaPensee EW, Dhannasekaran S, Hofer MD, Kuefer R, Chinnaiyan A, Rubin MA, Pienta KJ, Robins DM (2009) Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res 69:4434–4442

    Article  CAS  PubMed  Google Scholar 

  • Takenaka S, McCormick S, Safroneeva E, Xing Z, Gauldie J (2009) Influence of the tissue microenvironment on Toll-like receptor expression by CD11+ antigen-presenting cells isolated from mucosal tissues. Clin Vaccine Immunol 16:1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Thorisson GA, Muliu J, Brookes AJ (2009) Genotype-phenotype databases: challenges and solutions for the post-genomic era. Nat Rev Genet 10:9–18

    Article  CAS  PubMed  Google Scholar 

  • Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Vineis P, Berwick M (2006) The population dynamics of cancer: a Darwinian perspective. Int J Epidemiol 35:1151–1159

    Article  PubMed  Google Scholar 

  • Wang C, Mitsuya Y, Gharizadeh B, Ronanghi M, Shafer RW (2007) Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res 17:1195–1201

    Article  CAS  PubMed  Google Scholar 

  • Zlotogora J (2007) Multiple mutations responsible for frequent genetic diseases in isolated population. Eur J Hum Genet 15:272–278

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Bruce Gottlieb and Dr. Mark Trifiro acknowledge the support of grants from the Canadian Institutes of Health Research and the Weekend to End Breast Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Gottlieb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottlieb, B., Beitel, L.K., Alvarado, C. et al. Selection and mutation in the “new” genetics: an emerging hypothesis. Hum Genet 127, 491–501 (2010). https://doi.org/10.1007/s00439-010-0792-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-010-0792-9

Keywords

Navigation