Skip to main content
Log in

Repetitive DNA chromosomal organization in the cricket Cycloptiloides americanus: a case of the unusual X1X20 sex chromosome system in Orthoptera

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A common placement for most sex chromosomes that is involved in their evolutionary histories is the accumulation of distinct classes of repetitive DNAs. Here, with the aim of understanding the poorly studied repetitive DNA organization in crickets and its possible role in sex chromosome differentiation, we characterized the chromosomes of the cricket species Cycloptiloides americanus, a species with the remarkable presence of the unusual sex chromosome system X1X20♂/X1X1X2X2♀. For these proposes, we used C-banding and mapping through the fluorescence in situ hybridization of some repetitive DNAs. The C-banding and distribution of highly and moderately repetitive DNAs (C 0t-1 DNA) varied depending of the chromosome. The greater accumulation of repetitive DNAs in the X2 chromosome was evidenced. The microsatellites were spread along entire chromosomes, but (AG)10 and (TAA)10 were less enriched, mainly in the centromeric areas. Among the multigene families, the 18S rDNA was spread throughout almost all of the chromosomes, except for pair 5 and X2, while the U2 snDNA was placed exclusively in the largest chromosome. Finally, the 5S rDNA was exclusively located in the short arms of the sex chromosomes. The obtained data reinforce the importance of chromosomal dissociation and inversion as a primary evolutionary mechanism to generate neo-sex chromosomes in the species studied, followed by the repetitive DNAs accumulation. Moreover the exclusive placement of 5S rDNA in the sex chromosomes suggests the involvement of this sequence in sex chromosome recognition throughout meiosis and, consequently, their maintenance, in addition to their avoiding degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo D, Schneider MC, Paula-Neto E, Cella DM (2012) Sex chromosomes and meiosis in spiders: a review. In: Swan A (ed) Meiosis-molecular mechanisms and cytogenetic diversity. Intech, Rijeka, pp 87–108

  • Bidau CJ, Martí DA (2001) Meiosis and the Neo-XY of Dichroplus vittatus (Melanoplinae, Acrididae): a comparison between sexes. Genetica 110:185–194

    Article  Google Scholar 

  • Bueno D, Palacios-Gimenez OM, Cabral-de-Mello DC (2013) Chromosomal mapping of repetitive DNAs in Abracris flavolineata reveal possible ancestry for the B chromosome and surprisingly H3 histone spreading. PLoS One 8:e66532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabral-de-Mello DC, Moura RC, Martins C (2010) Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity 104:393–400

    Article  CAS  PubMed  Google Scholar 

  • Cabral-de-Mello DC, Oliveira SG, Moura RC, Martins C (2011) Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet 12:88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabrero J, Camacho JPM (1986) Cytogenetic studies in gomphocerine grasshoppers I. Comparative analysis of chromosome C-banding pattern. Heredity 56:365–372

    Article  Google Scholar 

  • Cabrero J, Camacho JP (2008) Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Res 16:595–607

    Article  CAS  PubMed  Google Scholar 

  • Castillo ER, Martí DA, Bidau CJ (2010) Sex and neo-sex chromosomes in Orthoptera: a review. J Orthopt Res 19:213–231

    Article  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  CAS  PubMed  Google Scholar 

  • del Cerro AL, Cunãdo N, Santos JL (1998) Synaptonemal complex analysis of the X1X2Y trivalent in Mantis religiosa L. males: inferences on the origin and maintenance of the sex-determining mechanism. Chromosome Res 6:5–11

    Article  PubMed  Google Scholar 

  • Forman M, Nguyen P, Hula V, Král J (2013) Sex chromosome pairing and extensive NOR polymorphism in Wadicosa fidelis (Araneae: Lycosidae). Cytogenet Genome Res 141:43–49

    Article  CAS  PubMed  Google Scholar 

  • Hanson RE, Islam-Faridi MN, Percival EA et al (1996) Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55–61

    Article  CAS  PubMed  Google Scholar 

  • Heitz E (1935) Die Herkunft der Chromozentren. Planta 18:571–635

    Article  Google Scholar 

  • Hewitt GM (1979) Grasshoppers and crickets. Animal cytogenetics: insecta 1 Orthoptera, vol 3. Gebrüder Borntraeger, Berlin

  • Hughes-Schrader S (1947) Reversion of X0 to XY sex chromosome mechanism in a phasmid. Chromosoma 3:57–65

    Google Scholar 

  • Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • John B, King M (1985) The inter-relationship between heterochromatin distribution and chiasma distribution. Genetica 66:183–194

    Article  Google Scholar 

  • Kaiser VB, Bachtrog D (2010) Evolutions of sex chromosome in insects. Annu Rev Genet 44:91–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B (2009) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541

    Article  CAS  PubMed  Google Scholar 

  • Kejnovský E, Michalovova M, Steflova P et al (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS One 8:e45519

    Article  PubMed Central  PubMed  Google Scholar 

  • Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2008) Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51:350–356

    Article  CAS  PubMed  Google Scholar 

  • Kusnetzova VG (1988) The unusual mechanism of sex-chromosome determination in the cotton bug Dysdercus superstitiosus F (Pyrrhocoridae, Heteroptera). Dokl Akad Nauk SSSR 301:456–458

    Google Scholar 

  • Maddison WP, Leduc-Robert G (2013) Multiple origins of sex chromosome fusions correlated with chiasma localization in Habronattus jumping spiders (Araneae: Salticidae). Evolution 67:2272–2558

    Article  Google Scholar 

  • Matsubara K, Knopp T, Sarre SD, Georges A, Ezaz T (2013) Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata). Mol Cytogenet 6:60

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsunaga S (2009) Junk DNA promotes sex chromosome evolution. Heredity 102:525–526

    Article  CAS  PubMed  Google Scholar 

  • Mesa A, de Mesa RS (1967) Complex sex-determining mechanisms in three species of South American grasshoppers (Orthoptera, Acridoidea). Chromosoma 21:163–180

    Article  Google Scholar 

  • Mesa A, García-Novo P (2001) Neometrypus badius a new species of cricket with an unusual sex determining mechanism (Grylloidea, Eneopteridae, Tafaliscinae, Neometrypini). J Orthopt Res 10:81–87

    Article  Google Scholar 

  • Mesa A, Ferreira A, Carbonell CS (1982) Cariología de los acridoideos neotropicales: estado actual de su conocimiento y nuevas contribuciones. Ann de la Société Entomologique de France (NS) 18:507–526

    Google Scholar 

  • Mesa A, Fontanetti CS, García-Novo P (2001) Does an X-autosome centric fusion in Acrdoidea condemn the species to extinction? J Orthopt Res 10:141–146

    Article  Google Scholar 

  • Mesa A, García-novo P, dos Santos D (2002) X1X2O (male)-X1X1X2X2 (female) chromosomal sex determining mechanism in the cricket Cycloptiloides americanus (Orthoptera, Grylloidea, Mogoplistidae). J Orthopt Res 1:87–90

    Article  Google Scholar 

  • Milani D, Cabral-de-Mello DC (2014) Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) revealed by FISH mapping: remarkable spreading in the A and B chromosomes. PLoS One 9:e97956

    Article  PubMed Central  PubMed  Google Scholar 

  • Morgan TH (1915) The predetermination of sex in Phylloxerans and Aphids. J Exp Zool 19:285–321

    Article  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen P, Sahara K, Yoshido A, Marec F (2010) Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138:343–354

    Article  CAS  PubMed  Google Scholar 

  • Palacios-Gimenez OM, Castillo ER, Martí DA, Cabral-de-Mello DC (2013) Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences. BMC Evol Biol 13:167

    Article  PubMed Central  PubMed  Google Scholar 

  • Panzera Y, Pita S, Ferreiro MJ et al (2012) High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). Cytogenet Genome Res 138:56–67

    Article  CAS  PubMed  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pokorná M, Kratochvíl L, Kejnovský E (2011) Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox). BMC Genet 12:90

    Article  PubMed Central  PubMed  Google Scholar 

  • Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

  • Santos JL, Arana P, Giráldez L (1983) Chromosome C-banding patterns in Spanish Acridoidea. Genetica 61:65–74

    Article  Google Scholar 

  • Schubert I (1984) Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae S-Lat)-inferences from the specifity of silver staining. Plant Syst Evol 144:291–305

    Article  Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Article  Google Scholar 

  • Schweizer D, Mendelak M, White MJD, Contreras N (1983) Cytogenetics of the parthenogenetic grasshopper Warramaba virgo and its bisexual relatives X. Pattern of fluorescent banding. Chromosoma 88:227–236

    Article  Google Scholar 

  • Steflova P, Tokan V, Vogel I et al (2013) Contrasting patterns of transposable element and satellite distribution on sex chromosomes (XY1Y2) in the dioecious plant Rumex acetosa. Genome Biol Evol 5:769–782

    Article  PubMed Central  PubMed  Google Scholar 

  • Steinemann S, Steinemann M (2005) Retroelements: tools for sex chromosome evolution. Cytogenet Genome Res 110:134–143

    Article  CAS  PubMed  Google Scholar 

  • Steinemann M, Steinemann S, Lottspeich F (1993) How Y chromosomes become genetically inert. Proc Natl Acad Sci USA 90:5737–5741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  PubMed  Google Scholar 

  • Terencio ML, Schneider CH, Gross MC et al (2013) Evolutionary dynamics of repetitive DNA in Semaprochilodus (Characiformes, Prochilodontidae): a fish model for sex chromosome differentiation. Sex Dev 7:325–333

    Article  CAS  PubMed  Google Scholar 

  • Ueshima N (1979) Hemiptera II: Heteroptera. Animal cytogenetics 3: insecta 6. Gebrueder Borntraeger, Berlin

  • Utsunomia R, Scacchetti PC, Pansonato-Alves JC, Oliveira C, Foresti F (2014) Comparative chromosome mapping of U2 snRNA and 5S rRNA genes in Gymnotus species (Gymnotiformes, Gymnotidae): evolutionary dynamics and sex chromosome linkage in Gpantanal. Cytogenet Genome Res 142:286–292

    Article  PubMed  Google Scholar 

  • Vítková M, Fukova I, Kubíčková S, Marec F (2007) Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosome Res 15:917–930

    Article  PubMed  Google Scholar 

  • Walton AC (1924) Studies on nematode gametogenesis. Z Zell-u Gewebl 1:167–239

  • Webb GC, Westerman M (1978) G- and C-banding in the Australian grasshopper Phaulacridium vittatum. Heredity 41:131–136

    Article  Google Scholar 

  • Webb GC, White MJD, Contreras N, Cheney J (1978) Cytogenetics of the parthogenetic grasshopper Warramaba (formely Moraba) virgo and its bisexual relatives IV. Chromosome banding studies. Chromosoma 67:309–339

    Article  Google Scholar 

  • Westerman M, Hewitt GM (1985) Chromosome banding in Podisma pedestris. Heredity 55:157–161

    Article  Google Scholar 

  • White MJD (1940) The origin and evolution of multiple sex-chromosome mechanisms. J Genet 40:303–336

    Article  Google Scholar 

  • White MJD (1941) The evolution of the sex chromosomes I. The X0 and X1X2Y mechanisms in praying mantids. J Genet 42:143–172

    Article  Google Scholar 

  • White MJD (1969) Chromosomal rearrangement and speciation in animals. Ann Rev Genet 3:75–98

    Article  Google Scholar 

  • White MJD (1973) Animal cytology and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Zefa E, Redu DR, Costa MKM, Fontanetti CS, Gottschalk MS, Padilha GB, Silva AF, Martins LP (2014) A new species of Endecous Saussure, 1878 (Orthoptera, Gryllidae) from northeast Brazil with the first X1X20 chromosomal sex system in Gryllidae. Zootaxa 3847:125–132

    Article  PubMed  Google Scholar 

  • Zwick MS, Hanson RE, McKnight TD, Nurul-Islam-Faridi M, Stelly DM (1997) A rapid procedure for the isolation of C 0t–1 DNA from plants. Genome 40:138–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Antonio Sergio Pascon for technical assistance in embryos obtaining. The study was funded by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, process number 2014/11763-8), Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Programa Primeiros Projetos-PROPE/UNESP. OMPG scholarship was supported by FAPESP (process number 2014/02038-8).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo C. Cabral-de-Mello.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios-Gimenez, O.M., Cabral-de-Mello, D.C. Repetitive DNA chromosomal organization in the cricket Cycloptiloides americanus: a case of the unusual X1X20 sex chromosome system in Orthoptera. Mol Genet Genomics 290, 623–631 (2015). https://doi.org/10.1007/s00438-014-0947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0947-9

Keywords

Navigation