Skip to main content
Log in

A genome-wide analysis of the expansin genes in Malus × Domestica

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Expansins were first identified as cell wall-loosening proteins; they are involved in regulating cell expansion, fruits softening and many other physiological processes. However, our knowledge about the expansin family members and their evolutionary relationships in fruit trees, such as apple, is limited. In this study, we identified 41 members of the expansin gene family in the genome of apple (Malus × Domestica L. Borkh). Phylogenetic analysis revealed that expansin genes in apple could be divided into four subfamilies according to their gene structures and protein motifs. By phylogenetic analysis of the expansins in five plants (Arabidopsis, rice, poplar, grape and apple), the expansins were divided into 17 subgroups. Our gene duplication analysis revealed that whole-genome and chromosomal-segment duplications contributed to the expansion of Mdexpansins. The microarray and expressed sequence tag (EST) data showed that 34 Mdexpansin genes could be divided into five groups by the EST analysis; they may also play different roles during fruit development. An expression model for MdEXPA16 and MdEXPA20 showed their potential role in developing fruit. Overall, our study provides useful data and novel insights into the functions and regulatory mechanisms of the expansin genes in apple, as well as their evolution and divergence. As the first step towards genome-wide analysis of the expansin genes in apple, our results have established a solid foundation for future studies on the function of the expansin genes in fruit development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BLAST:

The basic local alignment search tool

SMART:

A simple modular architecture research tool

HMM:

Hidden Markov model

NJ:

The neighbour-joining

MEGA:

Molecular evolutionary genetics analysis

References

  • Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer ELL (2002) The pfam protein families database. Nucleic Acids Res 30:276–280

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Belfield EJ, Ruperti B, Roberts JA, McQueen-Mason S (2005) Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra. J Exp Bot 56:817–823

    Article  PubMed  CAS  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brummell DA, Harpster MH, Dunsmuir P (1999) Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol Biol 39:161–169

    Article  PubMed  CAS  Google Scholar 

  • Budzinski IG, Santos TB, Sera T, Pot D, Vieira LG, Pereira LF (2011) Expression patterns of three alpha-expansin isoforms in Coffea arabica during fruit development. Plant Biol (Stuttg) 13:462–471

    Article  CAS  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10–30

    Article  PubMed Central  PubMed  Google Scholar 

  • Carey RE, Cosgrove DJ (2007) Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins. Ann Bot 99:1131–1141

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Civello PM, Powell AL, Sabehat A, Bennett AB (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol 121:1273–1280

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Li LC, Cho HT, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    Article  PubMed  CAS  Google Scholar 

  • Cox MC, Benschop JJ, Vreeburg RA, Wagemaker CA, Moritz T, Peeters AJ, Voesenek LA (2004) The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiol 136:2948–2960

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dotto MC, Martinez GA, Civello PM (2006) Expression of expansin genes in strawberry varieties with contrasting fruit firmness. Plant Physiol Biochem 44:301–307

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Giorno F, Guerriero G, Baric S, Mariani C (2012) Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis. BMC Genomics 13:639–651

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 8:187–209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayama H, Shimada T, Fujii H, Ito A, Kashimura Y (2006) Ethylene-regulation of fruit softening and softening-related genes in peach. J Exp Bot 57:4071–4077

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru M, Smith DL, Gross KC, Kobayashi S (2007) Expression of three expansin genes during development and maturation of Kyoho grape berries. J Plant Physiol 164:1675–1682

    Article  PubMed  CAS  Google Scholar 

  • Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filee P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci USA 105:16876–16881

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee A, Giordano W, Hirsch AM (2008) Cytokinin induces expansin gene expression in Melilotus alba Desr. wild-type and the non-nodulating, non-mycorrhizal (NodMyc) mutant Masym3. Plant Signal Behav 3:218–223

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee HJ, Lee S, Ko HJ, Kim KH, Choi IG (2011) An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity. Mol Cells 29:379–385

    Article  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain. Nucleic Acids Res 40:302–305

    Article  CAS  Google Scholar 

  • Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, Baldauf SL, McQueen-Mason SJ (2002) Plant expansins are a complex multigene family with an ancient evolutionary origin. Plant Physiol 128:854–864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Y, Jones L, McQueen-Mason S (2003) Expansins and cell growth. Curr Opin Plant Biol 6:603–610

    Article  PubMed  CAS  Google Scholar 

  • Li YZ, Wu BJ, Yu YL, Yang GD, Wu CA, Zheng CC (2011) Genome-wide analysis of the RING finger gene family in apple. Mol Genet Genomics 286:81–94

    Article  PubMed  CAS  Google Scholar 

  • Liang D, Xia H, Wu S, Ma F (2012) Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol Biol Rep 39:10759–10768

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Choi HS, Cho HT (2011) Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cells 31:393–397

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mbéguié-A-Mbéguié D, Hubert O, Baurens FC, Matsumoto T, Chillet M, Fils-Lycaon B, Sidibé-Bocs S (2009) Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop. J Exp Bot 60:2021–2034

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mount DW (2007) Using the basic local alignment search tool (BLAST). CSH Protoc pdb.top17. doi:10.1101/pdb.top17

  • Park CH, Kim TW, Son SH, Hwang JY, Lee SC, Chang SC, Kim SH, Kim SW, Kim SK (2011) Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana. Phytochemistry 71:380–387

    Article  CAS  Google Scholar 

  • Powell AL, Kalamaki MS, Kurien PA, Gurrieri S, Bennett AB (2003) Simultaneous transgenic suppression of LePG and LeExp1 influences fruit texture and juice viscosity in a fresh market tomato variety. J Agric Food Chem 51:7450–7455

    Article  PubMed  CAS  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242–252

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sampedro J, Lee Y, Carey RE, dePamphilis C, Cosgrove DJ (2005) Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. Plant J 44:409–419

    Article  PubMed  CAS  Google Scholar 

  • Sampedro J, Carey RE, Cosgrove DJ (2006) Genome histories clarify evolution of the expansin superfamily: new insights from the poplar genome and pine ESTs. J Plant Res 119:11–21

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    Article  PubMed  CAS  Google Scholar 

  • Schlosser J, Olsson N, Weis M, Reid K, Peng F, Lund S, Bowen P (2008) Cellular expansion and gene expression in the developing grape (Vitis vinifera L.). Protoplasma 232:255–265

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Valdivia ER, Sampedro J, Lamb JC, Chopra S, Cosgrove DJ (2007) Recent proliferation and translocation of pollen group allergen genes in the maize genome. Plant Physiol 143:1269–1281

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Valdivia ER, Stephenson AG, Durachko DM, Cosgrove DJ (2009) Class B beta-expansins are needed for pollen separation and stigma penetration. Sex Plant Reprod 22:141–152

    Article  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Vreeburg RA, Benschop JJ, Peeters AJ, Colmer TD, Ammerlaan AH, Staal M, Elzenga TM, Staals RH, Darley CP, McQueen-Mason SJ, Voesenek LA (2005) Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris. Plant J 43:597–610

    Article  PubMed  CAS  Google Scholar 

  • Xu RR, Zhang SZ, Lu LT, Cao H, Zheng CC (2013) A genome-wide analysis of the RNA helicase gene family in Solanum lycopersicum. Gene 513:128–140

    Article  PubMed  CAS  Google Scholar 

  • Xue T, Wang D, Zhang SZ, Ehlting J, Ni F, Jakab S, Zheng CC, Zhong Y (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9:550–570

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activitie of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu ZM, Kang B, He XW, Lv SL, Bai YH, Ding WN, Cheng M, Hyung-Taeg C, Wu P (2011) Root hair-specific expansins modulate root hair elongation in rice. Plant J 66:725–734

    Article  CAS  Google Scholar 

  • Zhao T, Liang D, Wang P, Liu J, Ma F (2012) Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol Genet Genomics 287:423–436

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Center for Apple Engineering and Technology, the Open Project Program of the State Key Laboratory of Crop Biology (Grant No. 2013KF07), the Open Project Program of Key laboratory of Biology and Molecular Biology in University of Shandong (Weifang University) (Grant No. 2012SWKF01) and Program of Science and Technology Development of Weifang (Grant No. 20121305) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huairui Shu.

Additional information

Communicated by S. Hohmann.

S. Zhang and R. Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Xu, R., Gao, Z. et al. A genome-wide analysis of the expansin genes in Malus × Domestica . Mol Genet Genomics 289, 225–236 (2014). https://doi.org/10.1007/s00438-013-0796-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0796-y

Keywords

Navigation