Skip to main content
Log in

Molecular characterization, genomic distribution and evolutionary dynamics of Short INterspersed Elements in the termite genome

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Short INterspersed Elements (SINEs) in invertebrates, and especially in animal inbred genomes such that of termites, are poorly known; in this paper we characterize three new SINE families (Talub, Taluc and Talud) through the analyses of 341 sequences, either isolated from the Reticulitermes lucifugus genome or drawn from EST Genbank collection. We further add new data to the only isopteran element known so far, Talua. These SINEs are tRNA-derived elements, with an average length ranging from 258 to 372 bp. The tails are made up by poly(A) or microsatellite motifs. Their copy number varies from 7.9 × 103 to 105 copies, well within the range observed for other metazoan genomes. Species distribution, age and target site duplication analysis indicate Talud as the oldest, possibly inactive SINE originated before the onset of Isoptera (~150 Myr ago). Taluc underwent to substantial sequence changes throughout the evolution of termites and data suggest it was silenced and then re-activated in the R. lucifugus lineage. Moreover, Taluc shares a conserved sequence block with other unrelated SINEs, as observed for some vertebrate and cephalopod elements. The study of genomic environment showed that insertions are mainly surrounded by microsatellites and other SINEs, indicating a biased accumulation within non-coding regions. The evolutionary dynamics of Talu~ elements is explained through selective mechanisms acting in an inbred genome; in this respect, the study of termites’ SINEs activity may provide an interesting framework to address the (co)evolution of mobile elements and the host genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akasaki T, Nikaido M, Nishihara H, Tsuchiya K, Segawa S, Okada N (2010) Characterization of a novel SINE superfamily from invertebrates: “Ceph-SINEs” from the genomes of squids and cuttlefish. Gene 454:8–19

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Calleri DV II, McGrail Reid E, Rosengaus RB, Vargo EL, Traniello JFA (2006) Inbreeding and disease resistance in a social insect: effects of heterozygosity on immunocompetence in the termite Zootermopsis angusticollis. Proc R Soc B 273:2633–2640

    Article  PubMed  Google Scholar 

  • Diaz-Gonzalez J, Dominguez A, Albornoz J (2010) Genomic distribution of retrotransposons 297, 1731, copia, mdg1 and roo in the Drosophila melanogaster species subgroup. Genetica 138:579–586

    Article  CAS  PubMed  Google Scholar 

  • Dolgin ES, Charlesworth B (2006) The fate of transposable elements in asexual populations. Genetics 174:817–827

    Article  CAS  PubMed  Google Scholar 

  • Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification, and rise to ecological dominance. Am Mus Novitat 3650:1–27

    Article  Google Scholar 

  • Feschotte C, Fourrier N, Desmons I, Mouchès C (2001) Birth of a retroposon: the Twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol Biol Evol 18:74–84

    CAS  PubMed  Google Scholar 

  • Gilbert N, Labuda D (1999) CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs. PNAS 96:2869–2874

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N, Labuda D (2000) Evolutionary inventions and continuity of CORE-SINEs in mammals. J Mol Biol 298:365–377

    Article  CAS  PubMed  Google Scholar 

  • Gogolevsky KP, Vassetzky NS, Kramerov DA (2009) 5S rRNA-derived and tRNA-derived SINEs in fruit bats. Genomics 93:494–500

    Article  CAS  PubMed  Google Scholar 

  • Goodier JL, Kazazian HH Jr (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:23–31

    Article  CAS  PubMed  Google Scholar 

  • Holt RA, Subramanian GM, Halpern A et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  CAS  PubMed  Google Scholar 

  • Hua-Van A, Le Rouzic A, Maisonhaute C, Capy P (2005) Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet Genome Res 110:426–440

    Article  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  • Jurka J, Kapitonov VV, Kohany O, Jurka MV (2007) Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genom Human Genet 8:241–259

    Article  CAS  Google Scholar 

  • Kajikawa M, Okada N (2002) LINEs mobilize SINEs in the eel through a shared 3′ sequence. Cell 111:433–444

    Article  CAS  PubMed  Google Scholar 

  • Koshikawa S, Miyazaki S, Cornette R, Matsumoto T, Miura T (2008) Genome size of termites (Insecta, Dictyoptera, Isoptera) and wood roaches (Insecta, Dictyoptera, Cryptocercidae). Naturwissenschaften 95:859–867

    Article  CAS  PubMed  Google Scholar 

  • Kramerov DA, Vassetzky NS (2005) Short retroposons in eukaryotic genomes. Int Rev Cytol 247:165–221

    Article  CAS  PubMed  Google Scholar 

  • Le Rouzic A, Boutin TS, Capy P (2007) Long-term evolution of transposable elements. PNAS 104:19375–19380

    Article  CAS  PubMed  Google Scholar 

  • Lenoir A, Lavie L, Prieto J-L, Goubely C, Côté J-C, Pélissier T, Deragon J-M (2001) The evolutionary origin and genomic organization of SINEs in Arabidopsis thaliana. Mol Biol Evol 18:2315–2322

    CAS  PubMed  Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  Google Scholar 

  • Luchetti A (2005) Identification of a short interspersed repeat in Reticulitermes lucifugus (Isoptera Rhinotermitidae) genome. DNA Seq 16:304–307

    CAS  PubMed  Google Scholar 

  • Luchetti A, Mantovani B (2009) Talua SINE biology in the genome of the Reticulitermes subterranean termites (Isoptera, Rhinotermitidae). J Mol Evol 69:589–600

    Article  CAS  PubMed  Google Scholar 

  • Luchetti A, Marini M, Mantovani B (2006) Non-concerted evolution of the RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera). Genetica 128:123–132

    Article  Google Scholar 

  • Mayer C (2009) Phobos v. 3.3.11, 2006–2010. Ruhr-Universität Bochum. http://www.rub.de/spezzoo/cm/cm_phobos.htm. Accessed 12 July 2010

  • Mita K, Kasahara M, Sasaki S et al (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35

    Article  CAS  PubMed  Google Scholar 

  • Nishihara H, Okada N (2008) Retroposons: genetic footprints on the evolutionary paths of life. In: Murphy WJ (ed) Methods in molecular biology: phylogenomics. Humana Press Inc, Totowa, pp 201–225

    Chapter  Google Scholar 

  • Nishihara H, Smit FAA, Okada N (2006) Functional noncording sequences derived from SINEs in the mammalian genome. Genome Res 16:864–874

    Article  CAS  PubMed  Google Scholar 

  • Ogiwara I, Miya M, Oshima K, Okada N (2002) V-SINEs: a new superfamily of vertebrate SINEs that are widespread in vertebrate genomes and retain a strongly conserved segment within each repetitive unit. Genome Res 12:316–324

    Article  CAS  PubMed  Google Scholar 

  • Ohshima K, Okada N (2005) SINEs and LINEs: symbionts of eukaryotic genomes with a common tail. Cytogenet Genome Res 110:475–490

    Article  CAS  PubMed  Google Scholar 

  • Piskurek O, Okada N (2007) Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. PNAS 104:12046–12051

    Article  CAS  PubMed  Google Scholar 

  • Silva JC, Loreto EL, Clark JB (2004) Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol 6:57–72

    CAS  PubMed  Google Scholar 

  • Sunter JD, Patel SP, Skilton RA, Githaka N, Knowles DP, Scoles GA, Nene V, de Villiers E, Bishop RP (2008) A novel SINE family occurs frequently in both genomic DNA and transcribed sequences in ixodid ticks of the arthropod sub-phylum Chelicerata. Gene 415:13–22

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8:e1000313

    Article  Google Scholar 

  • Tribolium Genome Sequencing Consortium (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  Google Scholar 

  • Tu Z (1999) Genomic and evolutionary analysis of Feilai, a diverse family of highly reiterated SINEs in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 16:760–766

    CAS  PubMed  Google Scholar 

  • Tu Z (2001) Maque, a family of extremely short interspersed repetitive elements: characterization, possible mechanism of transposition, and evolutionary implication. Gene 263:247–253

    Article  CAS  PubMed  Google Scholar 

  • Tu Z, Li S, Mao C (2004) The changing tails of a novel short interspersed element in Aedes aegypti: genomic evidence for slippage retrotransposition and the relationship between 3′ tandem repeats and the poly(dA) tail. Genetics 168:2037–2047

    Article  CAS  PubMed  Google Scholar 

  • Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:873–982

    Article  Google Scholar 

  • Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by Canziani donation, Fondazione del Monte—Bologna and PRIN-2008 funds to BM. We are particularly grateful to Claudia Husseneder for her encouragement to use the Coptotermes formosanus EST library she produced. We also wish to thank the two anonymous referees whose suggestions substantially improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Luchetti.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luchetti, A., Mantovani, B. Molecular characterization, genomic distribution and evolutionary dynamics of Short INterspersed Elements in the termite genome. Mol Genet Genomics 285, 175–184 (2011). https://doi.org/10.1007/s00438-010-0595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0595-7

Keywords

Navigation