Skip to main content
Log in

AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Plant cell wall degrading enzymes (PCWDE) are the major virulence determinants in phytopathogenic Pectobacterium, and their production is controlled by many regulatory factors. In this study, we focus on the role of the AepA protein, which was previously described to be a global regulator of PCWDE production in Pectobacterium carotovorum (Murata et al. in Mol Plant Microbe Interact 4:239–246, 1991). Our results show that neither inactivation nor overexpression of aepA affects PCWDE production in either Pectobacterium atrosepticum SCRI1043 or Pectobacterium carotovorum subsp. carotovorum SCC3193. The previously published observation based on the overexpression of aepA could be explained by the presence of the adjacent regulatory rsmB gene in the constructs used. Our database searches indicated that AepA belongs to the YtcJ subfamily of amidohydrolases. YtcJ-like amidohydrolases are present in bacteria, archaea, plants and some fungi. Although AepA has 28% identity with the formamide deformylase NfdA in Arthrobacter pascens F164, AepA was unable to catalyze the degradation of NdfA-specific N-substituted formamides. We conclude that AepA is a putative aminohydrolase not involved in regulation of PCWDE production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abendroth J, Niefind K, Schomburg D (2002) X-ray structure of a dihydropyrimidinase from Thermus sp. at 1.3 A resolution. J Mol Biol 320:143–156

    Article  CAS  PubMed  Google Scholar 

  • Bell KS, Sebaihia M, Pritchard L et al (2004) Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci USA 101:11105–11110

    Article  CAS  PubMed  Google Scholar 

  • Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (1999) A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure 7:205–216

    Article  CAS  PubMed  Google Scholar 

  • Buchbinder JL, Stephenson RC, Dresser MJ, Pitera JW, Scanlan TS, Fletterick RJ (1998) Biochemical characterization and crystallographic structure of an Escherichia coli protein from the phosphotriesterase gene family. Biochemistry 37:10860

    Article  CAS  PubMed  Google Scholar 

  • Burr T, Barnard AML, Corbett MJ, Pemberton CL, Simpson NJL, Salmond GPC (2006) Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol 59:113–125. doi:10.1111/j.1365-2958.2005.04939.x

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Cui Y, Liu Y, Dumenyo CK, Chatterjee AK (1995) Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone. Appl Environ Microbiol 61:1959–1967

    CAS  PubMed  Google Scholar 

  • Cui Y, Chatterjee A, Chatterjee AK (2001) Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc. Mol Plant Microbe Interact 14:516–526

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Chatterjee A, Hasegawa H, Chatterjee AK (2006) Erwinia carotovora subspecies produce duplicate variants of ExpR, LuxR homologs that activate rsmA transcription but differ in their interactions with N-acylhomoserine lactone signals. J Bacteriol 188:4715–4726

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    PubMed  Google Scholar 

  • Fukatsu H, Hashimoto Y, Goda M, Higashibata H, Kobayashi M (2004) Amine-synthesizing enzyme N-substituted formamide deformylase: screening, purification, characterization, and gene cloning. Proc Natl Acad Sci USA 101:13726–13731

    Article  CAS  PubMed  Google Scholar 

  • Fukatsu H, Goda M, Hashimoto Y, Higashibata H, Kobayashi M (2005) Optimum culture conditions for the production of N-substituted formamide deformylase by Arthrobacter pascens F164. Biosci Biotechnol Biochem 69:228–230

    Article  CAS  PubMed  Google Scholar 

  • Garson MJ, Simpson JS (2004) Marine isocyanides and related natural products—structure, biosynthesis and ecology. Nat Prod Rep 21:164–179

    Article  CAS  PubMed  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    CAS  PubMed  Google Scholar 

  • Hare PD, Moller SG, Huang LF, Chua NH (2003) LAF3, a novel factor required for normal phytochrome A signaling. Plant Physiol 133:1592–1604

    Article  CAS  PubMed  Google Scholar 

  • Heikinheimo R, Flego D, Pirhonen M, Karlsson MB, Eriksson A, Mae A, Koiv V, Palva ET (1995) Characterization of a novel pectate lyase from Erwinia carotovora subsp carotovora. Mol Plant Microbe Interact 8:207–217

    CAS  PubMed  Google Scholar 

  • Hinton JC, Perombelon MC, Salmond GP (1985) Efficient transformation of Erwinia carotovora subsp. carotovora and E. carotovora subsp. atroseptica. J Bacteriol 161:786–788

    CAS  PubMed  Google Scholar 

  • Kõiv V, Mäe A (2001) Quorum sensing controls the synthesis of virulence factors by modulating rsmA gene expression in Erwinia carotovora subsp carotovora. Mol Genet Genomics 265:287–292. doi:10.1007/s004380000413

    Article  PubMed  Google Scholar 

  • Liu Y, Murata H, Chatterjee A, Chatterjee AK (1993) Characterization of a novel regulatory gene aepA that controls extracellular enzyme production in the phytopathogenic bacterium Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 6:299–308

    CAS  PubMed  Google Scholar 

  • Liu Y, Cui Y, Mukherjee A, Chatterjee AK (1998) Characterization of a novel RNA regulator of Erwinia carotovora ssp. carotovora that controls production of extracellular enzymes and secondary metabolites. Mol Microbiol 29:219–234

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Cui Y, Liu Y, Dumenyo CK, Mukherjee A, Chatterjee AK (2001) Molecular characterization of global regulatory RNA species that control pathogenicity factors in Erwinia amylovora and Erwinia herbicola pv. gypsophilae. J Bacteriol 183:1870–1880

    Article  CAS  PubMed  Google Scholar 

  • Mäe A, Heikinheimo R, Palva ET (1995) Structure and regulation of the Erwinia carotovora subspecies carotovora Scc3193 cellulase gene Celv1 and the role of cellulase in phytopathogenicity. Mol Gen Genet 247:17–26

    Article  PubMed  Google Scholar 

  • Marits R, Koiv V, Laasik E, Mae A (1999) Isolation of an extracellular protease gene of Erwinia carotovora subsp carotovora strain SCC3193 by transposon mutagenesis and the role of protease in phytopathogenicity. Microbiology 145:1959–1966

    Article  CAS  PubMed  Google Scholar 

  • Mattinen L, Tshuikina M, Mae A, Pirhonen M (2004) Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 17:1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Murata H, McEvoy JL, Chatterjee A, Collmer A, Chatterjee AK (1991) Molecular cloning of an aepA gene that activates production of extracellular pectolytic, cellulolytic, and proteolytic enzymes in Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 4:239–246

    CAS  Google Scholar 

  • Murata H, Chatterjee A, Liu Y, Chatterjee AK (1994) Regulation of the production of extracellular pectinase, cellulase, and protease in the soft rot bacterium Erwinia carotovora subsp. carotovora: evidence that aepH of E. carotovora subsp. carotovora 71 activates gene expression in E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica, and Escherichia coli. Appl Environ Microbiol 60:3150–3159

    CAS  PubMed  Google Scholar 

  • Pérombelon MCM (2002) Potato diseases caused by soft rot Erwinias: an overview of pathogenesis. Plant Pathol 51:1–12

    Article  Google Scholar 

  • Pérombelon MCM, Kelman A (1980) Ecology of the soft rot Erwinias. Annu Rev Phytopathol 18:361–387

    Article  Google Scholar 

  • Pirhonen M, Heino P, Helander I, Harju P, Palva ET (1988) Bacteriophage T4 resistant mutants of the plant pathogen Erwinia carotovora. Microb Pathog 4:359–367

    Article  CAS  PubMed  Google Scholar 

  • Pirhonen M, Saarilahti H, Karlsson MB, Palva ET (1991) Identification of pathogenicity determinants of Erwinia carotovora subsp carotovora by transposon mutagenesis. Mol Plant Microbe Interact 4:276–283

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Seibert CM, Raushel FM (2005) Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44:6383–6391

    Article  CAS  PubMed  Google Scholar 

  • Sjöblom S, Brader G, Koch G, Palva TE (2006) Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol Microbiol 60:1474–1489

    Article  PubMed  Google Scholar 

  • Thoden JB, Phillips GN Jr, Neal TM, Raushel FM, Holden HM (2001) Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center. Biochemistry 40:6989–6997

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Vincent F, Yates D, Garman E, Davies GJ, Brannigan JA (2004) The three-dimensional structure of the N-acetylglucosamine-6-phosphate deacetylase, NagA, from Bacillus subtilis: a member of the urease superfamily. J Biol Chem 279:2809–2816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tanel Tenson and Tiina Alamäe for critical reading of the manuscript. This research was supported by Estonian Science Foundation (GLOMR7082 and SF0180088s08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viia Kõiv.

Additional information

Communicated by A. Hirsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kõiv, V., Andresen, L. & Mäe, A. AepA of Pectobacterium is not involved in the regulation of extracellular plant cell wall degrading enzymes production. Mol Genet Genomics 283, 541–549 (2010). https://doi.org/10.1007/s00438-010-0540-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0540-9

Keywords

Navigation