Skip to main content
Log in

The barley plastome mutant CL2 affects expression of nuclear and chloroplast housekeeping genes in a cell-age dependent manner

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The barley plastome mutant CL2 (cytoplasmic line 2) carries a point mutation in the infA gene, a homologue of the bacterial gene for the conserved translation initiator factor 1 (IF1). The function of infA in plastids is not known. The mutation in CL2 leads to a temporal chlorophyll deficiency in the primary leaf blade that is normalised in the basal and middle parts during further development. We have compared the expression of selected nuclear and plastid genes in different parts of primary leaves of CL2 and wild-type and found no indication for an adverse effect of the mutation on plastidial transcription. We observed an enhanced expression of RpoTp (encoding the phage-type nuclear-encoded plastid RNA polymerase) suggested to be caused by retrograde plastid signalling. Decreased amounts of plastid rRNA in basal and top sections are in agreement with the idea that the mutation in infA leads to a time- and position-dependent defect of plastid translation that causes a delay in plastid development. The normalisation of the phenotype in the middle section of CL2 leaves correlates with wild-type levels of chloroplast 16S rRNA and RbcL and increased expression of plastid housekeeping genes. The normalisation was not observed in cells at the tip of CL2 leaves suggesting different ways of regulating chloroplast development in cells at the tip of primary barley leaves as compared with other leaf sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlert D, Ruf S, Bock R (2003) Plastid protein synthesis is required for plant development in tobacco. Proc Natl Acad Sci USA 100:15730–15735

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018

    PubMed  CAS  Google Scholar 

  • Baumgartner BJ, Rapp JC, Mullet JE (1993) Plastid genes encoding the transcription/translation apparatus are differentially transcribed early in barley (Hordeum vulgare) chloroplast development (evidence of selective stabilization of psbA mRNA). Plant Physiol 101:781–791

    PubMed  CAS  Google Scholar 

  • Berends T, Gamble PE, Mullet JE (1987) Characterization of the barley chloroplast transcription units containing psaA-psaB and psaD-psaC. Nucleic Acids Res 15:5217–5240

    Article  PubMed  CAS  Google Scholar 

  • Bisanz-Seyer C, Li Y-F, Seyer P, Mache R (1989) The components of the plastid ribosome are not accumulated synchronously during the early development of spinach plants. Plant Mo1 Biol 12:201–211

    Article  CAS  Google Scholar 

  • Boelens R, Gualerzi CO (2002) Structure and function of bacterial initiation factors. Curr Protein Pept Sci 3:107–119

    Article  PubMed  CAS  Google Scholar 

  • Boyer SK, Mullet JE (1988) Sequence and transcription map of barley chloroplast psbA gene. Nucleic Acids Res 16:8184

    Article  PubMed  CAS  Google Scholar 

  • Colombo N, Ríos RD, Prina AR (2006) Plastome analysis of barley chloroplast mutator-induced mutants. J Basic Appl Genet 17:5–9

    Google Scholar 

  • Croitoru V, Bucheli-Witschel M, Hägg P, Abdulkarim F, Isaksson LA (2004) Generation and characterization of functional mutants in the translation initiation factor IF1 of Escherichia coli. Eur J Biochem 271:534–544

    Article  PubMed  CAS  Google Scholar 

  • Croitoru V, Semrad K, Prenninger S, Rajkowitsch L, Vejen M, Laursen BS, Sperling-Petersen HU, Isaksson LA (2006) RNA chaperone activity of translation initiation factor IF1. Biochimie 88:1875–1882

    Article  PubMed  CAS  Google Scholar 

  • Dahlquist KD, Puglisi JD (2000) Interaction of translation initiation factor IF1 with the E. coli ribosomal A site. J Mol Biol 299:1–15

    Article  PubMed  CAS  Google Scholar 

  • Dean C, Leech RM (1982) Genome expression during normal leaf development. I. Cellular and chloroplast numbers and DNA, RNA and protein levels in tissues of different ages within a seven-day-old wheat leaf. Plant Physiol 69:904–910

    PubMed  CAS  Google Scholar 

  • Demarsy E, Courtois F, Azevedo J, Buhot L, Lerbs-Mache S (2006) Building up of the plastid transcriptional machinery during germination and early plant development. Plant Physiol 142:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Emanuel C, Weihe A, Graner A, Hess W, Börner T (2004) Chloroplast development affects expression of phage-type RNA polymerases in barley leaves. Plant J 38:460–472

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1977) Anatomy of seed plants. Wiley, New York

    Google Scholar 

  • Hajdukiewicz PTJ, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  PubMed  CAS  Google Scholar 

  • Han CD, Coe EH Jr, Martienssen RA (1992) Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J 11:4037–4046

    PubMed  CAS  Google Scholar 

  • Hegeman CE, Halter CP, Owens TG, Hanson MR (2005) Expression of complementary RNA from chloroplast transgenes affects editing efficiency of transgene and endogenous chloroplast transcripts. Nucleic Acids Res 33:1454–1464

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Prombona A, Fieder B, Subramanian AR, Börner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12:563–571

    PubMed  CAS  Google Scholar 

  • Hess WR, Börner T (1999) Organellar RNA polymerases of higher plants. Int Rev Cytol 190:1–59

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Hoch B, Zeltz P, Hübschmann T, Kössel H, Börner T (1994a) Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Hess WR, Müller A, Nagy F, Börner T (1994b) Ribosome deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Mol Gen Genet 242:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hübschmann T, Börner T (1998) Characterisation of transcript initiation sites in ribosome-deficient barley plastids. Plant Mol Biol 36:493–496

    Article  PubMed  Google Scholar 

  • Klein RR, Mullet JE (1986) Regulation of chloroplast-encoded chlorophyll-binding protein translation during higher plant chloroplast biogenesis. J Biol Chem 261:11138–11145

    PubMed  CAS  Google Scholar 

  • Klein RR, Mullet JE (1990) Light-induced transcription of chloroplast genes. psbA transcription is differentially enhanced in illuminated barley. J Biol Chem 265:1895–1902

    PubMed  CAS  Google Scholar 

  • Kozak M (1983) Comparison of initiation of protein synthesis in Prokaryotes, Eukaryotes, and Organelles. Microbiol Rev 47:1–45

    PubMed  CAS  Google Scholar 

  • Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K (2004) Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp. Plant Cell Physiol 45:1194–1201

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Landau A, Díaz Paleo A, Civitillo R, Jaureguialzo M, Prina AR (2007) Two infA gene mutations independently originated from a mutator genotype in barley. J Hered 98:272–276

    Article  PubMed  CAS  Google Scholar 

  • Laursen BS, Sorensen HP, Mortensen KK, Sperling-Petersen HU (2005) Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev 69:101–123

    Article  PubMed  CAS  Google Scholar 

  • Leech RM, Rumsby MG, Thomson WW (1973) Plastid differentiation, acyl lipid and fatty acid changes in developing green maize leaves. Plant Physiol 52:24–45

    Google Scholar 

  • Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP deficient transcription machineries. Plant J 2:171–188

    Article  Google Scholar 

  • Legen J, Wanner G, Herrmann RG, Small I, Schmitz-Linneweber C (2007) Plastid tRNA genes trnC-GCA and trnN-GUU are essential for plant cell development. Plant J 51:751–762

    Article  PubMed  CAS  Google Scholar 

  • Liere K, Börner T (2006) Transcription of plastid genes. In: Grasser KD (ed) Regulation of transcription in plants. Blackwell, Oxford, pp 184–223

    Google Scholar 

  • Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577

    Article  PubMed  CAS  Google Scholar 

  • Meng BY, Tanaka M, Wakasugi T, Ohme M, Shinozaki K, Sugiura M (1988) Cotranscription of the genes encoding two P700 chlorophyll a apoproteins with the gene for ribosomal protein CS14: determination of the transcriptional initiation site by in vitro capping. Curr Genet 14:395–400

    Article  PubMed  CAS  Google Scholar 

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658

    Article  PubMed  CAS  Google Scholar 

  • Motohashi R, Yamazaki T, Myouga F, Ito T, Ito K, Satou M, Kobayashi M, Nagata N, Yoshida S, Nagashima A, Tanaka K, Takahashi S, Shinozaki K (2007) Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. Plant Mol Biol 64:481–497

    Article  PubMed  CAS  Google Scholar 

  • Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313

    Article  PubMed  CAS  Google Scholar 

  • Myhill RR, Konzak CF (1967) A new technique for culturing and measuring barley seedlings. Crop Sci 7:275–277

    Article  Google Scholar 

  • Pesaresi P, Masiero S, Eubel H, Braun HP, Bhushan S, Glaser E, Salamini F, Leister D (2006) Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria. Plant Cell 18:970–991

    Article  PubMed  CAS  Google Scholar 

  • Prina AR (1992) A mutator nuclear gene inducing a wide spectrum of cytoplasmically - inherited chlorophyll deficiences in barley. Theor Appl Genet 85:245–251

    Article  CAS  Google Scholar 

  • Prina AR (1996) Mutator-induced cytoplasmic mutants in barley: genetic evidence of activation of a putative chloroplast transposon. J Hered 87:385–389

    Google Scholar 

  • Prina AR, Arias MC, Lainez V, Landau A, Maldonado S (2003) A cytoplasmically inherited mutant controlling early chloroplast development in barley seedlings. Theor Appl Genet 107:1410–1418

    Article  PubMed  CAS  Google Scholar 

  • Prina AR, Maldonado S, Arias MC, Colombo N, RíosRD, Acevedo A, Otegui M (1996) Mutator-induced variability in barley. In: Slinkart A et al. (eds) Proceedings of the V International Oat Conference and VII International Barley Genetics Symposium. University of Saskatchewan, vol 2, pp 552–554

  • Rapp JC, Baumgartner BJ, Mullet J (1992) Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem 267:21404–21411

    PubMed  CAS  Google Scholar 

  • Rios RD, Saione H, Robredo C, Acevedo A, Colombo N, Prina AR (2003) Isolation and molecular characterization of atrazine tolerant barley mutants. Theor Appl Genet 106:696–702

    PubMed  CAS  Google Scholar 

  • Robertson D, Laetsch WM (1974) Structure and function of developing barley plastids. Plant Physiol 54:148–159

    PubMed  CAS  Google Scholar 

  • Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  PubMed  CAS  Google Scholar 

  • Ruppel N, Hangarter RP (2007) Mutations in a plastid-localized elongation factor G alter early stages of plastid development in Arabidopsis thaliana. BMC Plant Biol 7:37

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Satoh J, Baba K, Nakahira Y, Tsunoyama Y, Shiina T, Toyoshima Y (1999) Developmental stage-specific multi-subunit plastid RNA polymerases (PEP) in wheat. Plant J 18:407–415

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS (2005) Plastid polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1–68

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1970) Changes in plastid ribosomal RNA and enzymes during the growth of barley leaves in darkness. Phytochemistry 9:965–975

    Article  CAS  Google Scholar 

  • Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K (2004) The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation. Plant Cell Physiol 45:985–996

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JA, Gray JC (1999) Plastid translation is required for the expression of nuclear photosynthesis genes in the dark and in roots of the pea lip1 mutant. Plant Cell 11:901–910

    Article  PubMed  CAS  Google Scholar 

  • Topping JF, Leaver CJ (1990) Mitochondrial gene expression during wheat leaf development. Planta 182:399–407

    Article  CAS  Google Scholar 

  • Viro M, Kloppstech K (1980) Differential expression of the genes for ribulose-1-5-biphosphate carboxylase and light-harvesting chlorophyll a/b protein in the developing barley leaf. Planta 150:41–45

    Article  CAS  Google Scholar 

  • Wollgiehn R, Parthier B (1980) RNA and protein synthesis in plastid differentiation. In: Reinert J (ed) Results and problems in cell differentiation. Springer, Berlin, pp 97–145

    Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Day A (2002) Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome deficient plastids in stable phenocopies of cereal albino mutants. Mol Genet Genomics 267:27–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Juan J. Guiamet and Maureen Hanson for their generous gifts of antibodies. This work was supported by PICT 98: Proyecto de Investigación Científica y Técnica #04841, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina) to A.R.P. and by Deutsche Forschungsgemeinschaft (SFB 429) to T.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto R. Prina or Thomas Börner.

Additional information

Communicated by R. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, N., Emanuel, C., Lainez, V. et al. The barley plastome mutant CL2 affects expression of nuclear and chloroplast housekeeping genes in a cell-age dependent manner. Mol Genet Genomics 279, 403–414 (2008). https://doi.org/10.1007/s00438-008-0321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0321-x

Keywords

Navigation