Skip to main content
Log in

GalEa retrotransposons from galatheid squat lobsters (Decapoda, Anomura) define a new clade of Ty1/copia-like elements restricted to aquatic species

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Crustacean species have not been examined in great detail for their transposable elements content. Here we focus on galatheid crabs, which are one of the most diverse and widespread taxonomic groups of Decapoda. Ty1/copia retrotransposons are a diverse and taxonomically dispersed group. Using degenerate primers, we isolated several DNA fragments that show homology with Ty1/copia retroelements reverse transcriptase gene. We named the corresponding elements from which they originated GalEa1 to GalEa3 and analyzed one of them further by isolating various clones containing segments of GalEa1. This is the first LTR retrotransposon described in crustacean genome. Nucleotide sequencing of the clones revealed that GalEa1 has LTRs (124 bp) and that the internal sequence (4,421 bp) includes a single large ORF containing gag and pol regions. Further screening identified highly related elements in six of the nine galatheid species studied. By performing BLAST searches on genome databases, we could also identify GalEa-like elements in some fishes and Urochordata genomes. These elements define a new clade of Ty1/copia retrotransposons that differs from all other Ty1/copia elements and that seems to be restricted to aquatic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baba K (1988) Chirostylidae and Galatheidae Crustaceans (Decapoda: Anomura) of the Albatross Philippine Expedition, 1907–1910. Res Crust 2:1–203

    Google Scholar 

  • Britten RJ, McCormack TJ, Mears TL, Davidson EH (1995) Gypsy/Ty3-class retrotransposons integrated in the DNA of herring, tunicate and echinoderms. J Mol Evol 40:13–24

    Article  PubMed  CAS  Google Scholar 

  • Bui Q-T, Delaurière L, Casse N, Nicolas V, Laulier M, Chénais B (2007) Molecular characterization and phylogenetic position of a new mariner-like element in the coastal crab, Pachygrapsus marmoratus. Gene 396:248–256

    Article  PubMed  CAS  Google Scholar 

  • Burke WD, Malik HS, Jones JP, Eickbush TH (1999) The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Mol Biol Evol 12(4):502–511

    Google Scholar 

  • Capy P, Bazin C, Higuet D, Langin T (1997) Dynamics and evolution of transposable elements. R. G. Landes Company, Austin, TX

    Google Scholar 

  • Casse N, Pradier E, Loiseau C, Bigot Y, Laulier M (2000) Mariner, a mobile DNA transposon in the genomes of several hydrothermal invertebrates. InterRidge News 9:15–17

    Google Scholar 

  • Casse N, Bui QT, Nicolas V, Renault S, Bigot Y, Laulier M (2006) Species sympatry and horizontal transfers of Mariner transposons in marine crustacean genomes. Mol Phylogenet Evol 40(2):609–619

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    PubMed  CAS  Google Scholar 

  • Devic M, Albert S, Delseny M, Roscoe TJ (1997) Efficient PCR walking on plant genomic DNA. Plant Physiol Biochem 35:331–339

    CAS  Google Scholar 

  • Fedoroff N (2000) Transposons and genome evolution in plants. Proc Natl Acad Sci USA 97(13):7002–7007

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5(4):103–107

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A (1992) Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res 20(14):3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez P, Lessios HA (1999) Evolution of sea urchin retroviral-like (SURL) elements: evidence from 40 echinoid species. Mol Biol Evol 16(7):938–952

    PubMed  CAS  Google Scholar 

  • Gregory TR (2007) Animal genome size database. http://www.genomesize.com. Cited Jan 2007

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  • Greenwood AD, Leib-Mösch C, Seifarth W (2005) Abyss1: a novel L2-like non-LTR retroelement of the snakelocks nemone (Anemonia sulcata). Cytogenet Genome Res 110:553–558

    Article  PubMed  CAS  Google Scholar 

  • Halaimia-Toumi N, Casse N, Demattei MV, Renault S, Pradier E, Bigot Y, Laulier M (2004) The GC-rich transposon Bytmar1 from the deep-sea hydrothermal crab, Bythograea thermydron, may encode three transposase isoforms from a single ORF. J Mol Evol 59(6):747–760

    Article  PubMed  CAS  Google Scholar 

  • Hiller A, Holger K, Almon M, Werding B (2006) The Petrolisthes galathinus complex: species boundaries based on color pattern, morphology and molecules, and evolutionary interrelationships between this complex and other Porcellanidae (Crustacea: Decapoda: Anomura). Mol Phylogenet Evol 33(2):259–279

    Google Scholar 

  • Ishaq M, Wolf B, Ritter C (1990) Large-scale isolation of plasmid DNA using cetyltrimethylammonium bromide. Biotechniques 9(1):19–24

    PubMed  CAS  Google Scholar 

  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19(2):68–72

    Article  PubMed  CAS  Google Scholar 

  • Jurka J (1998) Repeats in genomic DNA: mining and meaning. Curr Opin Struct Biol 8(3):333–337

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 12:1626–1632

    Article  Google Scholar 

  • Kidwell MG, Lisch D (1997) Transposable elements as sources of variation in animals and plants. Proc Natl Acad Sci USA 94(15):7704–7711

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63

    Article  PubMed  CAS  Google Scholar 

  • Kvamme BJ, Kongshaug H, Nilsen F (2005) Organisation of trypsin genes in the salmon louse (Lepeophtheirus salmonis, Crustacea, copepoda) genome. Gene 352:63–74

    Article  PubMed  CAS  Google Scholar 

  • Li WH, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analysis of the human genome. Nature 409:847–849

    Article  PubMed  CAS  Google Scholar 

  • Lovsin N, Gubensek F, Kordi D (2001) Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia. Mol Biol Evol 18:2213–2224

    PubMed  CAS  Google Scholar 

  • McClure MA (1991) Evolution of retroposons by acquisition or deletion of retrovirus-like genes. Mol Biol Evol 8(6):835–856

    PubMed  CAS  Google Scholar 

  • Machordom A, Macpherson E (2004) Rapid radiation and cryptic speciation in squat lobsters of the genus Munida (Crustacea, Decapoda) and related genera in the South West Pacific: molecular and morphological evidence. Mol Phylogenet Evol 33(2):259–279

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Burke WD, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73(6):5186–5190

    PubMed  CAS  Google Scholar 

  • Malik HS, Eickbush TH (2001) TH Phylogenetic analysis of ribonuclease H domains suggests a late, chimerical origin of LTR retrotransposable elements and retroviruses. Genome Res 11(7):1187–1197

    Article  PubMed  CAS  Google Scholar 

  • Misra S, Crosby MA, Mungall CJ et al (26 co-authors) (2002) Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol 3(12):1–22

    Google Scholar 

  • Nylander JAA (2004) MrAIC.pl. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Ochman H, Ajioka JW, Garza D, Hartl DL (1990) Inverse polymerase chain reaction. Biotechnology (NY) 8:759–760

    Article  CAS  Google Scholar 

  • Palumbi SR, Benzie J (1991) Large mitochondrial DNA differences between morphologically similar Penaeid shrimp. Mol Mar Biol Biotechnol 1(1):27–34

    PubMed  CAS  Google Scholar 

  • Penton EH, Sullender BW, Crease TJ (2002) Pokey, a new DNA transposon in Daphnia (cladocera: crustacea). J Mol Evol 55(6):664–673

    Article  PubMed  CAS  Google Scholar 

  • Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062

    Article  PubMed  CAS  Google Scholar 

  • Poulter RT, Goodwin TJ (2005) DIRS-1 and the other tyrosine recombinase retrotransposons. Cytogenet Genome Res 110:575–588

    Article  PubMed  CAS  Google Scholar 

  • Rambaut A, Drummond A (2005) Tracer version 1.2.1. Computer program distributed by the authors. Department of Zoology, University of Oxford, UK

  • Robertson HM (1997) Multiple mariner transposons in flatworms and hydras are elated to those of insects. J Hered 88:195–201

    PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Van de Lagemaat LN, Landry JR, Mager DL, Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536

    Article  PubMed  Google Scholar 

  • Volff JN, Schartl M (2000) Multiple lineages of the non-LTR retrotransposon Rex1 with varying success in invading fish genomes. Mol Biol Evol 17:1673–1684

    PubMed  CAS  Google Scholar 

  • Volff JN, Hornung H, Schartl M (2001a) Fish retotransposons to the Penelope element of Drosophila virilis define a new group of retrotransposable elements. Mol Genet Genomics 265:711–720

    Article  PubMed  CAS  Google Scholar 

  • Volff JN, Körting C, Meyr A, Schartl M (2001b) Evolution and discontinuous distribution of Rex3 retrotransposons in fish. Mol Biol Evol 18(3):427–431

    PubMed  CAS  Google Scholar 

  • Volff JN, Bouneau L, Ozouf-Costaz C, Fischer C (2003) Diversity of retrotransposable elements in compact pufferfish genome. Trends Genet 19:674–678

    Article  PubMed  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9(10):3353–3362

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Claude Bazin, Clémentine Vitte, Guillaume Achaz, and Philippe Lopez for helpful comments on manuscript and Malcom Eden for English revision. We also thank Enrique MacPherson for biological and phylogenetical informations on squat lobsters species, and Marie-Catherine Boisselier, Michel Descombes, Guillaume Lecointre, and Bertrand Richer de Forges for providing biological material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Higuet.

Additional information

Communicated by M.-A. Grandbastien.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material S1 (RTF 908 kb)

Supplementary material S2 (RTF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrat, Y., Bonnivard, E. & Higuet, D. GalEa retrotransposons from galatheid squat lobsters (Decapoda, Anomura) define a new clade of Ty1/copia-like elements restricted to aquatic species. Mol Genet Genomics 279, 63–73 (2008). https://doi.org/10.1007/s00438-007-0295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0295-0

Keywords

Navigation