Skip to main content
Log in

Identification of salt stress inducible genes that control cell envelope related functions in Azospirillum brasilense Sp7

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Plant growth promoting rhizobacteria such as Azospirillum brasilense are agronomically important as they are frequently used for crop inoculation. But adverse factors such as increasing soil salinity limit their survival, multiplication and phytostimulatory effect. In order to understand the role of the genes involved in the adaptation of A. brasilense Sp7 to salt stress, a mutant library (6,800 mutants) was constructed after random integration of a mini-Transposon Tn5 derivative containing a promoterless gusA and oriV. The library was screened for salt stress inducible Gus activity on minimal malate agar medium containing NaCl and 5-bromo-4-chloro-3-indolyl-β-d-glucuronide. Salt stress responsiveness of the promoters was estimated by quantifying GusA activity in the presence and absence of NaCl stress using p-nitrophenyl-β-d-glucuronide as a substrate. In 11 mutants showing high levels of gusA expression in the presence of salt-stress, the partial nucleotide sequence of the DNA region flanking the site of Tn5 insertion was determined and analysed using the NCBI-BLAST programs. Similarity searches revealed that 10 out of the 11 genes sequenced showed notable similarity with genes involved in functions related to modulation in the composition of exopolysaccharides, capsular polysaccharides, lipopolysaccharides, peptidoglycan and lipid bilayer of the cell envelope. Induction of cell envelope related genes in response to salt stress and salt sensitive phenotype of several mutants in A. brasilense indicate a prominent role of cell envelope in salt-stress adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altabe SG, De Iannino NI, De Mendoza D, Ugalde RA (1994) New osmoregulated β(1–3), β(1–6) glucosyltransferase(s) in Azospirillum brasilense. J Bacteriol 176:4890–4898

    PubMed  CAS  Google Scholar 

  • Bashan Y, Levanony H (1991) Evidence that fibrillar anchoring is essential for Azospirillum brasilense Cd attachment to sand. Plant Soil 132:73–83

    Article  Google Scholar 

  • Beck HC (2005) Branched-chain fatty acid biosynthesis in a branched-chain amino acid amino transferase mutant of Staphylococcus carnosus. FEMS Microbiol Lett 243:37–44

    Article  PubMed  CAS  Google Scholar 

  • Beck HC, Hansen AM, Lauritsen FR (2004) Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus. J Appl Microbiol 96:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Burdman S, De Mot R, Vanderleyden J, Okon Y, Jurkevitch E (2000) Identification and characterization of the omaA gene encoding the major outer membrane protein of Azospirillum brasilense. DNA Seq 11:225–237

    PubMed  CAS  Google Scholar 

  • Campos ME, Martinez-Salazar JM, Lloret L, Moreno S, Nüńez C, Espin G, Soberon-Chavez G (1996) Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobactor vinelandii. J Bacteriol 178:793–1799

    Google Scholar 

  • Chowdhury SP, Nagarajan T, Tripathi R, Mishra MN, Le Rudulier D, Tripathi AK (2007) Strain-specific salt tolerance and osmoregulatory mechanisms in Azospirillum brasilense Sp7. FEMS Microbiol Lett 267:72–79

    Article  PubMed  CAS  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyl transferases. J Mol Biol 328:307–317

    Article  PubMed  CAS  Google Scholar 

  • De Troch P, Keijers V, Vanderleyden J (1994) DNA sequence analysis of the Azospirillum brasilense exoB gene, encoding UDP-glucose 4′-epimerase. Gene 144:143–144

    Article  PubMed  Google Scholar 

  • Fischer SE, Miguel MJ, Mori GB (2003) Effect of root exudates on the exoploysaccharide composition and the lipopolysaccharide profile of Azospirillum brasilense Cd under saline stress. FEMS Microbiol Lett 219:53–62

    Article  PubMed  CAS  Google Scholar 

  • Ghisla S, Thorpe C (2004) Acyl-CoA dehydrogenases. Eur J Biochem 271:494–508

    Article  PubMed  CAS  Google Scholar 

  • Hartmann A, Zimmer W (1994) Physiology of Azospirillum. In: Okon Y (ed) Azospirillum-plant associations. CRC, Boca Raton

    Google Scholar 

  • Hartmann A, Prabhu SR, Galinski EA (1991) Osmotolerance of diazotrophic rhizosphere bacteria. Plant Soil 137:105–107

    Article  CAS  Google Scholar 

  • Herrero M, de Lorenzo V, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    PubMed  CAS  Google Scholar 

  • Jofre E, Fischer S, Rivarola V, Balegno H, Mori G (1998a) Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can J Microbiol 44:416–412

    Article  CAS  Google Scholar 

  • Jofre E, Rivarola V, Balegno H, Mori G (1998b) Differential gene expression in Azospirillum brasilense Cd under saline stress. Can J Microbiol 44:929–936

    Article  CAS  Google Scholar 

  • Kanemasa Y, Yoshioka T, Hayashi H (1972) Alteration in the phospholipid composition of Staphylococcus aureus cultured in medium containing NaCl. Biochem Biophys Acta 280:444–450

    PubMed  CAS  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC6803. Biochem Biophys Res Commun 290:339–348

    Article  PubMed  CAS  Google Scholar 

  • Kim Jung-Ja P, Miura R (2004) Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. Eur J Biochem 271:483–493

    Article  PubMed  CAS  Google Scholar 

  • Klein W, Weber MHW, Marahiel MA (1999) Cold shock response of Bacillus subtilis: isoleucine-dependant switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J Bacteriol 181:5341–5349

    PubMed  CAS  Google Scholar 

  • Lamm RB, Neyra CA (1981) Characterization and cyst production of azospirilla isolated from selected grasses growing in New Jersey and New York. Can J Microbiol 27:1320–1325

    Article  Google Scholar 

  • Liu Y, Gao W, Wang Y, Wu L, Liu X, Yan T, Alm E, Arkin A, Thompson DK, Fields MW, Zhou J (2005) Transcriptome analysis of Shewanella oneidensis MR-1 in response to elevated salt conditions. J Bacteriol 187:2501–2507

    Article  PubMed  CAS  Google Scholar 

  • López CS, Heras H, Garda H, Ruzal S, Sánchez-Rivas C, Rivas E (2000) Biochemical and biophysical studies of Bacillus subtilis envelops under hyperosmotic stress. Int J Food Microbiol 55:137–142

    Article  PubMed  Google Scholar 

  • Madkour MA, Smith LT, Smith GM (1990) Preferential osmolyte accumulation: a mechanism of osmotic stress adaptation in diazotrophic bacteria. Appl Environ Microbiol 56:2876–2881

    PubMed  CAS  Google Scholar 

  • Michiels J, Van Soom T, D’hooghe I, Dombrecht B, Benhassine T, De Wilde P, Vanderleyden J (1998) The Rhizobium etli rpoN locus: DNA sequence analysis and phenotypic characterization of rpoN, ptsN and ptsA mutants. J Bacteriol 180:1729–1740

    PubMed  CAS  Google Scholar 

  • Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42:527–543

    Article  PubMed  CAS  Google Scholar 

  • Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol 46:905–915

    Article  PubMed  CAS  Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Ann Rev Microbiol 50:101–36

    Article  CAS  Google Scholar 

  • Pereg-Gerk L, Paquelin A, Gounon P, Kennedy IR, Elmerich C (1998) A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7. Mol Plant Microbe Interact 11:177–187

    Article  PubMed  CAS  Google Scholar 

  • Piuri M, Sanchez-Rivas C, Ruzul SM (2005) Cell wall modifications during osmotic stress in Lactobacillus casei. J Appl Microbiol 98:84–95

    Article  PubMed  CAS  Google Scholar 

  • Reinhold B, Hurek T, Baldani J, Dobereiner J (1988) Temperature and salt tolerance of Azospirillum Spp. from salt-affected soils in Brazil. In: Klingmueller W (ed) Azospirillum IV: genetics physiology, ecology. Springer, Heidelberg, pp 234–241

    Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Evol Microbiol 37:43–51

    Article  Google Scholar 

  • Riou N, Le Rudulier D (1990) Osmoregulation in Azospirillum brasilense: glycine betaine transport enhances growth and nitrogen fixation under salt stress. J Gen Microbiol 136:1455–1461

    CAS  Google Scholar 

  • Riou N, Poggi MC, Le Rudulier D (1991) Characterization of an osmoregulated periplasmic glycine betaine-binding protein in Azospirillum brasilense Sp7. Biochimie 73:1187–1193

    Article  PubMed  CAS  Google Scholar 

  • Saleena LM, Rangarajan S, Nair S (2002) Diversity of Azospirillum strains isolated from rice plants grown in saline and non-saline sites of coastal agricultural ecosystem. Microb Ecol 44:271–277

    Article  PubMed  CAS  Google Scholar 

  • Sharma SC, Raj D, Forouzandeh M, Bansal P (1996) Salt-induced changes in lipid composition and ethanol tolerance in Sacchromyces cerevisiae. Appl Biochem Biotechnol 56:189–195

    PubMed  CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Nat Acad Sci USA 71:522–525

    Article  PubMed  CAS  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  PubMed  CAS  Google Scholar 

  • Steil L, Hoffmann T, Budde I, Völker U, Bremer E (2003) Genome-wide transcriptional profiling analysis of adaptation of Bacillus subtilis to high salinity. J Bacteriol 185:6358–6370

    Article  PubMed  CAS  Google Scholar 

  • Tripathi AK, Mishra BM (1998) Isolation and cloning of Azospirillum lipoferum locus that complements Escherichia coli proU mutant. FEMS Microbiol Lett 162:241–247

    Article  PubMed  CAS  Google Scholar 

  • Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002) Inhibition of biosynthesis and activity of nitrogenases in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44:363–367

    Article  PubMed  CAS  Google Scholar 

  • Vanbleu E, Marchal K, Lambrecht M, Mathys J, Vanderleyden J (2004) Annotation of the pRhico plasmid of Azospirillum brasilense reveals its role in determining the outer surface composition. FEMS Microbiol Lett 232:165–172

    Article  PubMed  CAS  Google Scholar 

  • Vanstockem M, Michiels K, Vanderleyden J, Van Gool A (1987) Transposon mutagenesis of Azospirilum brasilense and Azospirillum lipoferum. Physical analysis of Tn5 and Tn5-mob insertion mutants. Appl Environ Microbiol 53:410–415

    PubMed  CAS  Google Scholar 

  • Vazquez A, Moreno S, Guzman J, Alvarado A, Espin G (1999) Transcriptional organization of the Azotobactor vinelandii algGXLVIFA genes: characterization of algF mutants. Gene 232:217–222

    Article  PubMed  CAS  Google Scholar 

  • Vijaranakul U, Nadakavukaren MJ, DE Jonge BLM, Wilkinson BJ, Jayaswal RK (1995) Increased cell size and shortened peptidoglycan interpeptide bridge of NaCl-stressed Staphylococcus aureus and their reversal by glycine betaine. J Bacteriol 177:5116–5121

    PubMed  CAS  Google Scholar 

  • Vijaranakul U, Nadakavukaren MJ, Bayles DO, Wilkinson BJ, Jayaswal RK (1997) Characterization of a NaCl-sensitive Stapylococcus aureus mutant and rescue of the NaCl-sensitive phenotype by glycine betaine but not by other compatible solutes. Appl Environ Microbiol 63:1889–1887

    PubMed  CAS  Google Scholar 

  • Weber A, Jung K (2002) Profiling early osmostress-dependant gene expression in Escherichia coli using DNA macroarrays. J Bacteriol 184:5502–5507

    Article  PubMed  CAS  Google Scholar 

  • Xi C, Vanderleyden J, Michiels J (1999) Bi-functional gfp- and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J Microbiol Methods 35:85–92

    Article  PubMed  CAS  Google Scholar 

  • Xie CH, Yokota A (2005) Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55:435–1438

    Google Scholar 

  • Xie B, Xu K, Zhao HX, Chen SF (2005) Isolation of transposon mutants from Azospirillum brasilense Yu62 and characterization of genes involved in indole-3-acetic acid biosynthesis. FEMS Microbiol Lett 248:57–63

    Article  PubMed  CAS  Google Scholar 

  • Ying-Xin Z, Denoya CD, Skinner DD, Fedechko RW, McArthur HAI, Morgenstern MR, Davies RA, Lobo S, Reynolds KA, Hutchinson CR (1999) Genes encoding acyl-CoA dehydrogenase (AcdH) homologues from Streptomyces coelicolor and Streptomyces avermitilis provide insights into the metabolism of small branched-chain fatty acids and macrolide antibiotic production. Microbiol 145:2323–2334

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support to TN from International KU-Leuven Scholarship and ASM-UNESCO travel grant. We thank Veerle Keijers for technical assistance; Jan Michiels and Anne Van Dommelen, for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Tripathi.

Additional information

Communicated by G. Klug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, T., Vanderleyden, J. & Tripathi, A.K. Identification of salt stress inducible genes that control cell envelope related functions in Azospirillum brasilense Sp7. Mol Genet Genomics 278, 43–51 (2007). https://doi.org/10.1007/s00438-007-0224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0224-2

Keywords

Navigation