Skip to main content
Log in

Evidence for Hox Gene Duplication in Rainbow Trout (Oncorhynchus mykiss): A Tetraploid Model Species

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We examined the genomic organization of Hox genes in rainbow trout (Oncorhynchus mykiss), a tetraploid teleost derivative species, in order to test models of presumptive genomic duplications during vertebrate evolution. Thirteen putative clusters were localized in the current rainbow trout genetic map; however, analysis of the sequence data suggests the presence of at least 14 Hox clusters. Many duplicated genes appear to have been retained in the genome and share a high percentage of amino acid similarity with one another. We characterized two Hox genes located within the HoxCb cluster that may have been lost independently in other teleost species studied to date. Finally, we identified conserved syntenic blocks between salmonids and human, and provide data supporting two new linkage group homeologies (i.e., RT-3/16, RT-12/29) and three previously described homeologies (RT-2/9, RT-17/22, and RT-27/31) in rainbow trout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Agellon LB, Davies SL, Lin CM, Chen TT, Powers DA (1988) Rainbow trout has two genes for growth hormone. Mol Reprod Dev 1:11–17

    Article  PubMed  CAS  Google Scholar 

  • Allendorf FW, Danzmann RG (1997) Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics 145:1083–1092

    PubMed  CAS  Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fish. In: Turner JB (ed) Evolutionary genetics of fish. Plenum Press, New York, pp 1–53

    Google Scholar 

  • Allendorf FW, Sebb JE, Knudsen KL, Thorgaard GH, Leary RF (1986) Gene-centromere mapping of 25 loci in rainbow trout. J Hered 77:307–312

    Google Scholar 

  • Amores A, Force A, Yan YL, Loly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish Hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH (2004) Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14:1–10

    PubMed  CAS  Google Scholar 

  • Aparicio S, Hawker K, Cottage A, Mikawa Y, Zuo L, Venkatesh B, Chen E, Krumlauf R, Brenner S (1997) Organization of the Fugu rubripes Hox clusters: Evidence for continuing evolution of vertebrate Hox complexes. Nat Genet 16:79–83

    Article  PubMed  CAS  Google Scholar 

  • Bardakci F, Skibinski DO (1994) Application of the RAPD technique in tilapia fish: Species and subspecies identification. Heredity 73:117–123

    PubMed  CAS  Google Scholar 

  • Boyd M, Lanyon WG, Connor JM (1993) Screening for molecular pathologies in Lesch–Nyhan syndrome. Hum Mutat 2:127–130

    Article  PubMed  CAS  Google Scholar 

  • Bruce AE, Oates AC, Prince VE, Ho RK (2001) Additional Hox clusters in the zebrafish: Divergent expression patterns belie equivalent activities of duplicate Hoxb5 gene. Evol Dev 3:127–144

    Article  PubMed  CAS  Google Scholar 

  • Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform 4:29

    Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. Freeman, New York

    Google Scholar 

  • Chiu CH, Dewar K, Wagner GP, Takahashi K, Ruddle F, Ledje C, Bartsch P, Scemama JL, Stellwag E, Fried C, Prohaska SJ, Stadler PF, Amemiya CT (2004) Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genomic evolution. Genome Res 14:11–17

    PubMed  CAS  Google Scholar 

  • Danzmann RG, Jackson TR, Ferguson MM (1999) Epistasis in allelic expression at upper temperature tolerance QTL in rainbow trout. Aquaculture 173:45–58

    Article  CAS  Google Scholar 

  • de Rosa R, Grenier JK, Andreevas T, Cook CE, Adoutte A, Akam M, Carroll SB, Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776

    PubMed  CAS  Google Scholar 

  • Dorschner MO, Phillips RB (1999) Comparative analysis of two NRAMP loci from rainbow trout. DNA Cell Biol 18:573–583

    Article  PubMed  CAS  Google Scholar 

  • Estoup A, Presa P, Krieg F, Vaiman D, Guyomard R (1993) (CT)n and (GT)n microsatellites: A new class of genetic markers for Salmo trutta L (brown trout). Heredity 71:488–496

    PubMed  CAS  Google Scholar 

  • Ferrier DE (2004) Hox genes: Did the vertebrate ancestor have a Hox14? Curr Biol 14:210–211

    Article  CAS  Google Scholar 

  • Ferrier DE, Minguillon C, Holland PW, Garcia-Fernàndez J (2000) The amphioxus Hox cluster: Deuterostome posterior flexibility and Hox14. Evol Dev 2:284–293

    Article  PubMed  CAS  Google Scholar 

  • Fjose A, Molven A, Eiken HG (1988) Molecular cloning and characterization of homeobox-containing genes from Atlantic salmon. Gene 62:141–152

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Ganguly A, Rock MJ, Prockop DJ (1993) Conformation sensitive gel electrophoresis for rapid detection of single base differences in double stranded PCR products and DNA fragments: Evidence for solvent induced bends in DNA heteroduplexes. Proc Natl Acad Sci USA 90:10325–10329

    PubMed  CAS  Google Scholar 

  • Garcia-Fernàndez J, Holland PWH (1994) Archetypal organization of the amphioxus Hox gene cluster. Nature 370:563–566

    PubMed  Google Scholar 

  • Glavac D, Dean M (1993) Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Hum Mutat 2:404–414

    Article  PubMed  CAS  Google Scholar 

  • Hartley SE (1987) The chromosomes of salmonid fish. Biol Rev 62:197–214

    Google Scholar 

  • Hayashi K, Yandell DW (1993) How sensitive is PCR-SSCP? Hum Mutat 2:338–346

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2003) 2R or not 2R: Testing hypotheses of genome duplication in early vertebrates. J Struct Funct Genomics 3:85–93

    Article  PubMed  CAS  Google Scholar 

  • Jackson TR, Ferguson MM, Danzmann RG, Fishback AG, Ihssen PE, O’Connell M, Crease TJ (1998) Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity 80:143–151

    Article  Google Scholar 

  • Johnson KR, Wright JE Jr, May B (1987) Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics 116:579–591

    PubMed  CAS  Google Scholar 

  • Jozefowicz C, McClintock J, Prince V (2003) The fates of zebrafish Hox gene duplicates. J Struct Funct Genomics 3:185–194

    Article  PubMed  CAS  Google Scholar 

  • Kappen C, Schughart K, Ruddle FH (1989) Two steps in the evolution of Antennapedia-class vertebrate homeobox genes. Proc Natl Acad Sci USA 86:5459–5463

    PubMed  CAS  Google Scholar 

  • Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Ladjali-Mohammedi K, Grapin-Botton A, Bonnin MA, Le Douarin NM (2001) Distribution of Hox genes in the chicken genome reveals a new segment of conservation between human and chicken. Cytogenet Cell Genet 92:157–161

    Article  PubMed  CAS  Google Scholar 

  • Larhammar D, Lundin LG, Hallbook F (2002) The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res 12:1910–1920

    Article  PubMed  CAS  Google Scholar 

  • Leder EH, Danzmann RG, Ferguson MM (2004) Comparison of GNRH3 genes across salmonid genera. Anim Genet 35:126–129

    Article  PubMed  CAS  Google Scholar 

  • Ledje C, Kim CB, Ruddle FH (2002) Characterization of Hox genes in the Bichir, Polypterus palmas. J Exp Zool 294:107–111

    Article  PubMed  CAS  Google Scholar 

  • Málaga-Trillo E, Meyer A (2001) Genome duplications and accelerated evolution of Hox genes and cluster architecture in teleost fish. Am Zool 41:676–686

    Google Scholar 

  • McGinnis W, Krumlauf R (1992) Homeobox genes and axial patterning. Cell 68:283–302

    Article  PubMed  CAS  Google Scholar 

  • Meyer A, Málaga-Trillo E (1999) Vertebrate genomics: More fishy tales about Hox genes. Curr Biol 9:210–213

    Article  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: The one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    Article  PubMed  CAS  Google Scholar 

  • Misof BY, Wagner GP (1995) Evidence for four Hox clusters in Killifish Fundulus heteroclitus (Teleostei). Mol Phylogenet Evol 5:309–322

    Google Scholar 

  • Misof BY, Blanco MJ, Wagner GP (1996) PCR survey of Hox genes of the zebrafish: New sequence information and evolutionary implications. J Exp Zool 274:193–206

    Article  PubMed  CAS  Google Scholar 

  • Mito T, Endo K (2000) PCR survey of Hox genes in the Crinoid and Ophiuroid: Evidence for anterior conservation and posterior expansion in the echinoderm Hox gene cluster. Mol Phylogenet Evol 14:375–388

    PubMed  CAS  Google Scholar 

  • Morgenstern B (1999) DIALIGN 2: Improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218

    Article  PubMed  CAS  Google Scholar 

  • Naruse K, Fukamachi S, Mitani H, Kondo M, Matsuoka T, Kondo S, Hanamura N, Morita Y, Hasegawa K, Nishigaki R, Shimada A, Wada H, Kusakabe T, Suzuki N, Kinoshita M, Kanamori A, Terado T, Kimura H, Nonaka M, Shima A (2000) A detailed linkage map of medaka, Oryzias latipes: Comparative genomics and genome evolution. Genetics 154:1773–1784

    PubMed  CAS  Google Scholar 

  • Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H (2004) A medaka gene map: The trace of ancestral vertebrate proto–chromosomes revealed by comparative gene mapping. Genome Res 14:820–827

    Article  PubMed  CAS  Google Scholar 

  • Nelson JS (1994) Fish of the world, 3rd ed. John Wiley and Sons, New York

    Google Scholar 

  • Nichols KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes M, Phillips RB, Bentzen P, Spies I, Knudsen K, Allendorf FW, Cunningham BM, Brunelli J, Zhang H, Ristow S, Drew R, Brown KH, Wheeler PA, Thorgaard GH (2003) A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet 34:102–115

    Article  PubMed  CAS  Google Scholar 

  • Oakley TH, Phillips RB (1999) Phylogeny of salmonine fish based on growth hormone introns: Atlantic (Salmo) and Pacific (Oncorhynchus) salmon are not sister taxa. Mol Phylogenet Evol 11:381–393

    PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer Verlag, New York

    Google Scholar 

  • Ohno S, Muramoto J, Klein J, Atkin NB (1969) Diploid–tetraploid relationship in clupeoid and salmonoid fish. In: Darlington CD, Lewis KR (ed) Chromosomes today, Vol 2. Oliver and Boyd, Edinburgh, pp 139–147

    Google Scholar 

  • O’Malley KG, Sakamoto T, Danzmann RG, Ferguson MM (2003) Quantitative trait loci for spawning date and body weight in rainbow trout: testing for conserved effects across ancestrally duplicated chromosomes. J Hered 94:273–284

    PubMed  CAS  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989a) Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    CAS  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989b) Rapid and sensitive detection of point mutations and DNA polyporphisms using the polymerase chain reaction. Genomics 5:874–879

    Article  CAS  Google Scholar 

  • Pavell AM, Stellwag EJ (1994) Survey of Hox-like genes in the teleost Morone saxatilis: Implications for evolution of the Hox gene family. Mol Mar Biol Biotechnol 33:149–157

    Google Scholar 

  • Phillips RB, Rab P (2001) Chromosome evolution in the Salmonidae (Pisces): An update. Biol Rev Camb Philos Soc 76:1–25

    Article  PubMed  CAS  Google Scholar 

  • Phillips RB, Zimmerman A, Noakes MA, Palti Y, Morasch MR, Eiben L, Ristow SS, Thorgaard GH, Hansen JD (2003) Physical and genetic mapping of the rainbow trout major histocompatibility regions: Evidence for duplication of the class I region. Immunogenetics 55:561–569

    Article  PubMed  CAS  Google Scholar 

  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  PubMed  CAS  Google Scholar 

  • Powers TP, Amemiya CT (2004) Evidence for a Hox14 paralog group in vertebrates. Curr Biol 14:R183–R184

    Article  PubMed  CAS  Google Scholar 

  • Prince VE (2002) The Hox paradox: More complex(es) than imagined. Dev Biol 249:1–15

    Article  PubMed  CAS  Google Scholar 

  • Prince VE, Joly L, Ekker M, Ho RK (1998) Zebrafish Hox genes: Genomic organization and modified colinear expression patterns in the trunk. Development 125:407–420

    PubMed  CAS  Google Scholar 

  • Prohaska SJ, Stadler PF (2004) The duplication of the Hox gene clusters in teleost fish. Theor Biosci 123:89–110

    CAS  Google Scholar 

  • Sakamoto T, Danzmann RG, Okamoto N, Ferguson MM, Ihssen PE (1999) Linkage analysis of quantitative trait loci associated with spawning time in rainbow trout (Oncorhynchus mykiss). Aquaculture 173:33–43

    Article  CAS  Google Scholar 

  • Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Khoo SK, Woram RA, Okamoto N, Ferguson MM, Holm LE, Guyomard R, Hoyheim B (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex specific differences in recombination rates. Genetics 155:1331–1345

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  CAS  Google Scholar 

  • Santini S, Boore JL, Meyer A (2003) Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res 13:1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Schughart K, Kappen C, Ruddle FH (1989) Duplication of large genomic regions during the evolution of vertebrate homeobox genes. Proc Natl Acad Sci USA 86:7067–7071

    PubMed  CAS  Google Scholar 

  • Scott MP (1992) Vertebrate homeobox gene nomenclature. Cell 71:551–553

    Article  PubMed  CAS  Google Scholar 

  • Sidow A (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev 6:715–722

    Article  PubMed  CAS  Google Scholar 

  • Skrabanek L, Wolfe KH (1998) Eukaryote genome duplication—Where’s the evidence? Curr Opin Genet Dev 8:694–700

    Article  PubMed  CAS  Google Scholar 

  • Snell EA, Scemama JL, Stellwag EJ (1999) Genomic organization of the Hoxa4Hoxa10 region from Morone saxatilis: implications for Hox gene evolution among vertebrates. J Exp Zool 285:41–9

    Article  PubMed  CAS  Google Scholar 

  • Sybenga J (1972) General cytogenetics. American Elsevier, New York

    Google Scholar 

  • Taggart JB, Hynes RA, Prodohl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fish. J Fish Biol 40:963–965

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTALX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Google Scholar 

  • Tindall KR, Kunkel TA (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27:6008–6013

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y (2004) Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fish and land vertebrates. Proc Natl Acad Sci USA 101:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) Mapchart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Voss SR, Smith JJ, Gardiner DM, Parichy DM (2001) Conserved vertebrate chromosome segments in the large salamander genome. Genetics 158:735–746

    PubMed  CAS  Google Scholar 

  • Wittbrodt J, Meyer A, Schartl M (1998) More genes in fish. BioEssay 20:511–515

    Google Scholar 

  • Woram RA, Gharbi K, Sakamoto T, Hoyheim B, Holm L, Naish K, McGowan C, Ferguson MM, Phillips RB, Stein J, Guyomard R, Cairney M, Taggart JB, Powell R, Davidson W, Danzmann RG (2003) Comparative genome analysis of the primary sex-determining locus in salmonid fish. Genome Res 13:272–280

    Article  PubMed  CAS  Google Scholar 

  • Woram RA, McGowan C, Stout JA, Gharbi K, Ferguson MM, Hoyheim B, Davidson EA, Davidson WS, Rexroad C, Danzmann RG (2004) A genetic linkage map for Arctic char (Salvelinus alpinus): Evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome 47:304–315

    Article  PubMed  CAS  Google Scholar 

  • Wright JE Jr, Johnson K, Hollister A, May B (1983) Meiotic models to explain classical linkage, pseudolinkage, and chromosome pairing in tetraploid derivative salmonid genomes. Isozymes Curr Top Biol Med Res 10:239–260

    PubMed  Google Scholar 

  • Young WP, Wheeler PA, Coryell VH, Keim P, Thorgaard GH (1998) A detailed linkage map of rainbow trout produced using doubled haploids. Genetics 148:839–850

    PubMed  CAS  Google Scholar 

  • Zhang J, Nei M (1996) Evolution of Antennapedia class homeobox genes. Genetics 142:295–303

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by AquaNet, Canada’s Network of Centers of Excellence in aquaculture, and the Natural Sciences and Engineering Research Council of Canada (NSERC). We also wish to thank Dr. Teresa Crease and the JME reviewers for their constructive comments on the manuscript and Xia Yue and Karim Gharbi for their laboratory assistance and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy G. Danzmann.

Additional information

The sequence data for this study have been submitted to GenBank under the following accession numbers: AY567792, AY567793, AY567794, AY567795, AY567796, AY567797, AY567798, AY567799, AY567800, AY567801, AY567802, AY567803, AY567804, AY567805, AY567806, AY567807, AY567808, AY567809, AY567810, AY567812, AY567813, AY567814, AY567815, AY567816, and AY567817.

[Reviewing Editor : Dr. Axel Meyer]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghadam, H.K., Ferguson, M.M. & Danzmann, R.G. Evidence for Hox Gene Duplication in Rainbow Trout (Oncorhynchus mykiss): A Tetraploid Model Species. J Mol Evol 61, 804–818 (2005). https://doi.org/10.1007/s00239-004-0230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-004-0230-5

Keywords

Navigation