Skip to main content
Log in

Monitoring of gene expression profiles and identification of candidate genes involved in drought responses in Festuca mairei

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To understand the molecular genetic basis underlying drought tolerance in grasses, the cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was applied for identification of genes responding to drought stress in a xerophytic adapted plant, Festuca mairei. A total of 11,346 transcript derived fragments (TDFs) were detected, and 464 (4.1%) TDFs were identified as differentially expressed fragments (DEFs) during the drought treatment of the plant. The expression patterns of these DEFs included up-regulated (∼30%), down-regulated (∼54.3%), and the remainder (∼16.7%) showing transient changes. The differential expression patterns of 171 DEFs were further confirmed by macroarray hybridization analysis. Sequences had been obtained for 163 DEFs, and 62 sequences had no significant hits to sequences currently in public databases. Predicted functions of remaining 101 sequences were subdivided into 17 categories. Down-regulated genes were highly represented by metabolism and cellular biogenesis. Up-regulated DEFs were enriched in genes involved in transcription, defense, cell cycle and DNA processing. Analysis of the 163 DEFs provides a first glimpse into the transcripts of F. mairei during drought stress treatment. The combination of data from studies on genetic model plants and on diverse plant species will enhance understanding of the drought tolerance mechanisms in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albertini E, Marconi G, Barcaccia G, Raggi L, Falcinelli M (2004) Isolation of candidate genes for apomixis in Poa pratensis L. Plant Mol Biol 56(6):879–894

    Article  PubMed  CAS  Google Scholar 

  • Antoniw JF, Ritter CE, Pierpoint WS, Van Loon LC (1980) Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J Gen Virol 47:79–87

    Article  CAS  Google Scholar 

  • Arabidopsis genome initiative [AGI] (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Aronson L, Gold J, Gull RJ (1987) Cool-season turfgrass response to drought stress. Crop Sci 27:1261–1266

    Article  Google Scholar 

  • Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Bachem CWB, Oomen RJF, Visser RGF (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep 16:57–173

    Article  Google Scholar 

  • Bajaj S, Targolli J, Liu LF, Ho THD, Wu R (1999) Transgenic approaches to increase dehydration-stress tolerance in plants. Mol Breed 5:493–503

    Article  CAS  Google Scholar 

  • Banzai T, Hershkovits G, Katcoff DJ, Hanagata N, Dubinsky Z, Karube I (2002) Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza. Plant Sci 162:499–505

    Article  CAS  Google Scholar 

  • Bartels D, Salamini F (2001) Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol 127:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Barth O, Zschiesche W, Siersleben S, Humbeck K (2004) Identification of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiol Plant 121:282–293

    Article  PubMed  CAS  Google Scholar 

  • Bockel C, Salamini F, Bartels D (1998) Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigma plantagineum. J Plant Physiol 152:158–166

    CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–10111

    Article  PubMed  CAS  Google Scholar 

  • Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25

    Article  PubMed  CAS  Google Scholar 

  • Chandler PM, Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45:113–141

    Article  CAS  Google Scholar 

  • Chow TY, Hsing YIC, Chen CS, Chen HH, Liu SM, Chao YT, Chang SJ, Chen HC, Chen SK, Chen TR, Chen YL, Cheng CH, Chung CI, Han SY, Hsiao SH, Hsiung JN, Hsu CH, Huang JJ, Kau PI, Lee MC, Leu HL, Li YF, Lin SJ, Lin YC,Wu SW, Yu CY, Yu SW, Wu HP, Shaw JF (Unpublished) Oryza sativa BAC 0J1187_E11 genomic sequence

  • Cooper B, Clarke JD, Budworth P, Kreps J, Hutchison D, Park S, Guimil S, Dunn M, Luginbuhl P, Ellero C, Goff SA, Glazebrook J (2003) A network of rice genes associated with stress response and seed development. Proc Natl Acad Sci USA 100:4945–4950

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599

    Article  PubMed  CAS  Google Scholar 

  • Daniels MJ, Mirkov TE, Chrispeels MJ (1994) The plasma membrane of Arabidopsis thaliana contains a mercury-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol 106:1325–1333

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15(5):1131–1142

    Article  PubMed  CAS  Google Scholar 

  • Dilks DW, Ring RH, Khawaja XZ, Novak TJ, Aston C (2003) High-throughput confirmation of differential display PCR results using reverse Northern blotting. J Neurosci Methods 123:47–54

    Article  PubMed  CAS  Google Scholar 

  • Donson J, Fang Y, Espiritu-Santo G, Xing W, Salazar A, Miyamoto S, Armendarez V, Volkmuth W (2002) Comprehensive gene expression analysis by transcript profiling. Plant Mol Biol 48:75–97

    Article  PubMed  CAS  Google Scholar 

  • Fischer K, Arbinger B, Kammerer B, Busch C, Brink S, Wallmeier H, Sauer N, Eckerskorn C, Flugge UI (1994) Cloning and in vivo expression of functional triose phosphate/phosphate translocators from C3- and C4-plants: evidence phosphate/phosphate translocators from C3- and C4-plants: evidence for the putative participation of specific amino acid residues in the recognition of phosphoenolpyruvate. Plant J 5(2):215–226

    Article  PubMed  CAS  Google Scholar 

  • Franks RG, Wang C, Levin JZ, Liu Z (2002) SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development 129:(1)253–263

    PubMed  CAS  Google Scholar 

  • Fry JD, Butler JD (1989) Responses of tall fescue and hard fescue to deficit irrigation. Crop Sci 29:1535–1541

    Article  Google Scholar 

  • Gaude N, Flemetakis HTE, Katinakis P, Udvardi M, Dörmann P (2004) The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and lotus. J Biol Chem 279(33):34624–34630

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J et al. (1994) Current advances in abscisic acid action and signaling. Plant Mol Biol 26:1557–1577

    Article  PubMed  CAS  Google Scholar 

  • Grimm B, Kruse E, Kloppstech K (1989) Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophll binding protiens. Plant Mol Biol 13(5):583–593

    Article  PubMed  CAS  Google Scholar 

  • Gross J, Stein RJ, Fett-Neto AG, Palma-Fett J (2003) Iron homeostasis related genes in rice. Genet Mol Biol 26(4):477–497

    Article  CAS  Google Scholar 

  • Guerrero FD, Jones JT, Mullet JE (1990) Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted: sequence and expression of three inducible genes. Plant Mol Biol 15:11–26

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M, Herbst M (1997) Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ 20:609–616

    Article  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos ML, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–906

    Article  PubMed  CAS  Google Scholar 

  • Kotani K, Nakamura Y, Sato S, Kaneko T, Asamizu E, Miyajima N, Tabata S (1997) Structural analysis of Arabidopsis thaliana chromosome 5. DNA Res 4(4):291–300

    Article  PubMed  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Vol II Water, radiation, salt and other stresses. 2nd edn. Academic, New York

    Google Scholar 

  • Li L, Cheng X, Ling HQ (2004) Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Mol Biol 54(1):125–136

    Article  PubMed  Google Scholar 

  • Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 101(26):9897–9902

    Article  PubMed  CAS  Google Scholar 

  • Marlatt ML, West CP, McConnell ME, Sleper DA, Buck GW, Correll JC, Saidi S (1997) Investigations on xerophytic Festuca spp. from Morocco and their associated endophytes. Neotyphodium/Grass Interactions. Baxon and Hill, Plenum, New York

  • Memon AR, Hwang S, Deshpande N, Thompson GA, Herrin DL (1995) Novel aspects of the regulation of a cDNA (Arf1) from Chlamydomonas with high sequence identity to animal ADP-ribosylation factor 1. Plant Mol Biol 29(3):567–577

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Zilinskas BA (1994) Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J 5:397–405

    Article  PubMed  CAS  Google Scholar 

  • Mueller KJ, Lin J, Pozzi C, Pruefer D, Fischer R, Salamini F, Rohde W (Unpublished) Plant shape organizations of barley or tobacco knox gene over-expressing tobacco and potato plants and evidence for KNOX interactions in planta

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Pattanagul W, Madore MA (1999) Water deficit effects on raffinose family oligosaccharide metabolism in coleus. Plant Physiol 121:987–993

    Article  PubMed  CAS  Google Scholar 

  • Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J et al (1989) Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1:81–93

    Article  PubMed  CAS  Google Scholar 

  • Pichersky E, Bernatzky R, Tanksley SD, Breidenbach RB, Kausch AP, Cashmore AR (1985) Molecular characterization and genetic mapping of two clusters of genes encoding chlorophyll a/b-binging proteins in Lycopersicon esculentum (tomato). Gene 40(2–3):247–58

    Article  PubMed  CAS  Google Scholar 

  • Qian YL, Fry JD, Upham WS (1997) Rooting and drought avoidance of warm-season turfgrasses and tall fescue. Crop Sci 37:905–910

    Article  Google Scholar 

  • Quarrie SA, Gulli M, Calestani C, Steed A (1994) Location of gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theoret Appl Genet 89:794–800

    Article  CAS  Google Scholar 

  • Romo S, Labrador E, Dopico B (2001) Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiol Biochem 39:1017–1026

    Article  CAS  Google Scholar 

  • Salter AH, Newman BJ, Napier JA, Gray JC (1992) Import of the precursor of the chloroplast Rieske iron-sulphur protein by pea chloroplasts. Plant Mol Biol 20(3):569–574

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Matsumoto T, Yamamoto K (2002a) Oryza sativa nipponbare (GA3) genomic DNA, chromosome 2, BAC clone:OJ1003_B06, Published only in Database

  • Sasaki T, Matsumoto T, Hattori M, SakakiY, Katayose Y (2002b) Oryza sativa nipponbare (GA3) genomic DNA, chromosome 9, BAC clone:OJ1081_G10, Published only in Database

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 arabidopsis genes under drought and cold stresses by using a full-Length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 30:279–292

    Article  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1999) Molecular responses to drought stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. RG Landes, Austin, pp 11–28

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Stevens C, Titarenko E, Hargreaves JA, Gurr SJ (1996) Defence-related gene activation during an incompatible interaction between Stragonospora (Septoria) nodorum and barely (Hordeum vulgare L.) Coleoptile cells. Plant Mol Biol 31(4):74–49

    Article  Google Scholar 

  • Takemoto D, Hayashi M, Doke N, Nishimura M, Kawakita K (2000) Isolation of the gene for EILP, an elicitor-inducible LRR receptor-like protein, from tobacco by differential display. Plant Cell Physiol 41(4):458–464

    PubMed  CAS  Google Scholar 

  • Vedele FD, Caboche M (1993) A tobacco cDNA clone encoding a GATA-1 zinc finger protein homologous to regulators of nitrogen metabolism in fungi. Mol Gen Genet 240(3):365–373

    Google Scholar 

  • Vogt T (2002) Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis. Planta 214(3):492–495

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Liu D, Sun J, Zhang A (2005) Asparagine synthetase gene TaASNI from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162(1):81–89

    Article  PubMed  CAS  Google Scholar 

  • Wang JP, Bughrara SS (2005) Detection of an efficient restriction enzyme combination for cDNA–AFLP analysis in Festuca mairei and evaluation of the identity of transcript-derived fragments. Mol Biotechnol 29:211–220

    Article  PubMed  CAS  Google Scholar 

  • White RH, Engelke MC, Morton SJ, Ruemmele BA (1992) Competitive turgor maintenance in tall fescue. Crop Sci 32:251–256

    Article  Google Scholar 

  • Williams J, Bulman M, Huttly A, Phillips A, Neill S (1994) Characterization of a cDNA from Arabidopsis thaliana encoding a potential thiol protease whose expression is induced independently by wilting and abscisic acid. Plant Mol Biol 25:259–270

    Article  PubMed  CAS  Google Scholar 

  • Wolpert TJ, Navarre DA, Moore DL, Macko V (1994) Identification of the 100-kD victorin binding protein from oats. Plant Cell 6(8):1145–1155

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Youngner VB (1985) Physiology of water use and water stress. In: Gibeault VA, Cockerham ST (eds) Turfgrass water conservation. University of California, Cooperative Extension 21405, Riverside, CA pp 37–43

  • Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Yuan H, He G (Unpublished) Molecular responses to brown planthopper feeding in rice

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleiman S. Bughrara.

Additional information

Communicated by K. Shirasu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2007_208_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.P., Bughrara, S.S. Monitoring of gene expression profiles and identification of candidate genes involved in drought responses in Festuca mairei . Mol Genet Genomics 277, 571–587 (2007). https://doi.org/10.1007/s00438-007-0208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0208-2

Keywords

Navigation