Skip to main content
Log in

Concerted evolution of a tandemly arrayed family of mating-specific genes in Phytophthora analyzed through inter- and intraspecific comparisons

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Multigene families are features of most eukaryotic genomes, which evolve through a variety of mechanisms. This study describes the structure, expression, and evolution of a novel family in the oomycete Phytophthora. In the heterothallic species P. infestans, M96 is expressed specifically during sexual sporogenesis, and encodes a low-complexity extracellular protein that may be a component of oospore walls. Intriguingly, M96 exists in P. infestans as 22 relatively homogeneous loci tandemly repeated at a single site, which is partitioned by inversions and retroelements into subclusters exhibiting semi-independent evolution. M96 relatives were detected in other heterothallic and homothallic oomycetes including species closely (P. mirabilis, P. phaseoli) or distantly (P. ramorum, P. sojae) related to P. infestans. Those M96 relatives also exhibit oosporogenesis-specific expression and are arrayed multigene families. Nucleotide changes and repeat expansion diversify M96 in each species, however, paralogues are more related than orthologues. Concerted evolution through gene conversion and not strong purifying selection appears to be the major contributor to intraspecific homogenization. Divergence and concerted evolution was also detected between isolates of P. infestans. The divergence of M96 proteins between P. infestans, P. ramorum, and P. sojae exceeds that of typical proteins, reflecting trends in reproductive proteins from other kingdoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alibardi L, Spisni E, Toni M (2003) Presence of putative histidine-rich proteins in the amphibian epidermis. J Exp Zool 297A:105–117

    Article  CAS  Google Scholar 

  • Armbrust EV et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977

    Article  PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S, Wang MC (1983) Biochemical aspects of morphogenesis in Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora, its biology, taxonomy, ecology, and pathology. APS Press, St. Paul, pp 121–137

    Google Scholar 

  • Bettencourt BR, Feder ME (2002) Rapid concerted evolution via gene conversion at the Drosophila hsp70 genes. J Mol Evol 54:569–586

    Article  PubMed  CAS  Google Scholar 

  • Borts RH, Haber JE (1989) Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics 123:69–80

    PubMed  CAS  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Ann Rev Plant Physiol Plant Mol Biol 49:281–309

    Article  CAS  Google Scholar 

  • Casselton LA, Olesnicky NS (1998) Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62:55–70

    PubMed  CAS  Google Scholar 

  • Chamnanpunt J, Shan W-x, Tyler Brett M (2001) High frequency mitotic gene conversion in genetic hybrids of the oomycete Phytophthora sojae. Proc Natl Acad Sci.USA 98:14530–14535

    Article  PubMed  CAS  Google Scholar 

  • Chen LL, Rekosh DM, Loverde PT (1992) Schistosoma mansoni p48 eggshell protein gene characterization developmentally regulated expression and comparison to the p14 eggshell protein gene. Mol Biochem Parasitol 52:39–52

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Jinks-Robertson S (1998) Mismatch repair proteins regulate heteroduplex formation during mitotic recombination in yeast. Mol Cell Biol 18:6525–6537

    PubMed  CAS  Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32

    Article  PubMed  CAS  Google Scholar 

  • Cornels H, Ichinose Y, Barz W (2000) Characterization of cDNAs encoding two glycine-rich proteins in chickpea (Cicer arietinum L.): accumulation in response to fungal infection and other stress factors. Plant Sci 154:83–88

    Article  PubMed  CAS  Google Scholar 

  • Cvitanich C, Judelson HS (2003) A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. Eukaryot Cell 2:465–473

    Article  PubMed  CAS  Google Scholar 

  • Elder JF Jr, Turner BJ (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Quart Rev Biol 70:297–320

    Article  PubMed  CAS  Google Scholar 

  • Ellis J, Dodds P, Pryor T (2000) Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol 3:278–284

    Article  PubMed  CAS  Google Scholar 

  • Fabritius A-L, Cvitanich C, Judelson HS (2002) Stage-specific gene expression during sexual development in Phytophthora infestans. Mol Microbiol 45:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Fabritius AL, Judelson HS (2003) A mating-induced protein of Phytophthora infestans is a member of a family of elicitors with divergent structures and stage-specific patterns of expression. Mol Plant-Microbe Inter 16:926–935

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fernandez-Pavia SP, Grunwald NJ, Diaz-Valasis M, Cadena-Hinojosa M, Fry WE (2004) Soilborne oospores of Phytophthora infestans in central Mexico survive winter fallow and infect potato plants in the field. Plant Dis 88:29–33

    Article  Google Scholar 

  • Ferris PJ, Pavlovic C, Fabry S, Goodenough UW (1997) Rapid evolution of sex-related genes in Chlamydomonas. Proc Natl Acad Sci USA 94:8634–8639

    Article  PubMed  CAS  Google Scholar 

  • Fiebig A, Kimport R, Preuss D (2004) Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc Natl Acad Sci USA 101:3286–3291

    Article  PubMed  CAS  Google Scholar 

  • Fry WE, Goodwin SB (1997) Resurgence of the Irish potato famine fungus. Bioscience 47:363–371

    Article  Google Scholar 

  • Gonzalez IL, Sylvester JE (2001) Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics 73:255–263

    Article  PubMed  CAS  Google Scholar 

  • Goodwin SB, Smart CD, Sandrock RW, Deahl KL, Punja ZK, Fry WE (1998) Genetic charge within populations of Phytophthora infestans in the United States and Canada during 1994 to 1996: role of migration and recombination. Phytopathology 88:939–949

    Article  Google Scholar 

  • Gotesson A, Marshall JS, Jones DA, Hardham AR (2002) Characterization and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi. Mol Plant-Microbe Inter 15:907–921

    Article  CAS  Google Scholar 

  • Gumucio DL, Wiebauer K, Caldwell RM, Samuelson LC, Meisler MH (1988) Concerted evolution of human amylase genes. Mol Cell Biol 8:1197–1205

    PubMed  CAS  Google Scholar 

  • Haberer G, Hindemitt T, Myeres BC, Mayer KFX (2004) Transcriptional similarities, dissimilarities, and conservation of cis-elements in duplicated genes of Arabidopsis. Plant Physiol 136:3009–3022

    Article  PubMed  CAS  Google Scholar 

  • Hozumi N, Tonegawa S (1976) Evidence for somatic rearrangement of immuno globulin genes coding for variable and constant regions. Proc Natl Acad Sci.USA 73:3628–3632

    Article  PubMed  CAS  Google Scholar 

  • Hurst LD (2002) The K a/K s ratio: diagnosing the form of sequence evolution. Trends Genet 18:486–487

    Article  PubMed  Google Scholar 

  • Judd SR, Petes TD (1988) Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics 118:401–410

    PubMed  CAS  Google Scholar 

  • Judelson HS, Randall TA (1998) Families of repeated DNA in the oomycete Phytophthora infestans and their distribution within the genus. Genome 41:605–615

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS, Roberts S (2002) Novel protein kinase induced during sporangial cleavage in the oomycete Phytophthora infestans. Eukaryot Cell 1:687–695

    Article  PubMed  CAS  Google Scholar 

  • Judelson HS, Tooley PW (2000) Enhanced polymerase chain reaction methods for detecting and quantifying Phytophthora infestans in plants. Phytopathology 90:1112–1119

    Article  CAS  Google Scholar 

  • Kim KS, Judelson HS (2003) Sporangia-specific gene expression in the oomyceteous phytopathogen Phytophthora infestans. Eukaryot Cell 2:1376–1385

    Article  PubMed  CAS  Google Scholar 

  • Kitano T, Saitou N (1999) Evolution of Rh blood group genes have experienced gene conversions and positive selection. J Mol Evol 49:615–626

    Article  PubMed  CAS  Google Scholar 

  • Kuang H, Woo S-S, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870–2894

    Article  PubMed  CAS  Google Scholar 

  • Lagow E, DeSouza MM, Carson DD (1999) Mammalian reproductive tract mucins. Human Reprod Update 5:280–292

    Article  CAS  Google Scholar 

  • Liao D (1999) Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet 64:24–30

    Article  PubMed  CAS  Google Scholar 

  • Liao D (2000) Gene conversion drives within genic sequences: concerted evolution of ribosomal RNA genes in bacteria and archaea. J Mol Evol 51:305–317

    PubMed  CAS  Google Scholar 

  • Liu Z, Bos JI, Armstrong M, Whisson SC, da Cunha L, Torto-Alalibo T, Win J, Avrova AO, Wright F, Birch PR, Kamoun S (2005) Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Mol Biol Evol 22:659–672

    Article  PubMed  CAS  Google Scholar 

  • Makalowski W, Boguski MS (1998) Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences. Proc Natl Acad Sci 95:9407–9412

    Article  PubMed  CAS  Google Scholar 

  • Mao Y, Tyler BM (1991) Genome organization of Phytophthora megasperma f. sp glycinea. Exper Mycol 15:283–291

    Article  CAS  Google Scholar 

  • Moeller EM, De Cock AWAM, Prell HH (1993) Mitochondrial and nuclear DNA restriction enzyme analysis of the closely related Phytophthora species P. infestans, P. mirabilis, and P. phaseoli. J Phytopathol 139:309–321

    Google Scholar 

  • Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:29

    Google Scholar 

  • Nasrallah JB (2002) Recognition and rejection of self in plant reproduction. Science 296:305–308

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94:7799–7806

    Article  PubMed  CAS  Google Scholar 

  • O’Neill RJ, O’Neill MJ, Graves JAM (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:68–72

    Article  PubMed  CAS  Google Scholar 

  • Pond SLK, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA, Holmes EC (2002) Recombination in evolutionary genomics. Ann Rev Genet 36:75–97

    Article  PubMed  CAS  Google Scholar 

  • Randall TA, Dwyer RA, Huitema E, Beyer K, Cvitanich C, Kelkar H, Ah Fong AMV, Gates K, Roberts S, Yatzkan E, Gaffney T, Law M, Testa A, Torto T, Zhang M, Zheng L, Mueller E, Windass J, Binder A, Birch PRJ, Gisi U, Govers F, Gow NAR, Mauch F, van West P, Waugh ME, Yu J, Boller T, Kamoun S, Lam ST, Judelson HS (2005) Large-scale gene discovery in the oomycete Phytophthora infestans reveals likely components of phytopathogenicity shared with true fungi. Mol Plant Microbe Inter 18:229–243

    Article  Google Scholar 

  • Randall TA, Judelson HS (1999) Construction of a bacterial artificial chromosome library of Phytophthora infestans and transformation of clones into P. infestans. Fungal Genet Biol 28:160–170

    Article  PubMed  CAS  Google Scholar 

  • Sachetto-Martins G, Franco LO, de Oliveira DE (2000) Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim Biophys Acta 1492:1–14

    PubMed  CAS  Google Scholar 

  • Sawyer S (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538

    PubMed  CAS  Google Scholar 

  • Schardl C, Craven K (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12:2681–2723

    Article  PubMed  Google Scholar 

  • Schloetterer C, Tautz D (1994) Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol 4:777–783

    Article  PubMed  CAS  Google Scholar 

  • Shuldiner AR, Nirula A, Roth J (1989) Hybrid DNA artifact from PCR of closely related target sequences. Nucleic Acids Res 17:4409

    Article  PubMed  CAS  Google Scholar 

  • Sogin ML, Silberman JD (1998) Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int J Parasit 28:11–20

    Article  CAS  Google Scholar 

  • Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nature Rev Genet 3:137–144

    Article  CAS  Google Scholar 

  • Swanson WJ, Yang Z, Wolfner MF, Aquadro CF (2001) Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc Natl Acad Sci USA 98:2509–2514

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tiffin P, Hahn MW (2002) Coding sequence divergence between two closely related plant species: Arabidopsis thaliana and Brassica rapa ssp. pekinensis. J Mol Evol 54:746–753

    Article  PubMed  CAS  Google Scholar 

  • Viguera E, Canceill D, Ehrlich SD (2001) Replication slippage involves DNA polymerase pausing and dissociation. EMBO J 20:2587–2595

    Article  PubMed  CAS  Google Scholar 

  • Voglmayr H, Greilhuber J (1998) Genome size determination in peronosporales (Oomycota) by Feulgen image analysis. Fungal Genet Biol 25:181–195

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton. Proc Natl Acad Sci USA 92:280–284

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Springer for helpful discussions, T. Girke for assistance with databases, M. Coffey and P. Tooley for providing strains, and the National Science Foundation of the United States for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard S. Judelson.

Additional information

Communicated by P.Punt

Sequence data from this article have been deposited with the GenBank Data Libraries under accessions DQ196155 to DQ196175.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cvitanich, C., Salcido, M. & Judelson, H.S. Concerted evolution of a tandemly arrayed family of mating-specific genes in Phytophthora analyzed through inter- and intraspecific comparisons. Mol Genet Genomics 275, 169–184 (2006). https://doi.org/10.1007/s00438-005-0074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0074-8

Keywords

Navigation