Skip to main content
Log in

The mitochondrial IMP peptidase of yeast: functional analysis of domains and identification of Gut2 as a new natural substrate

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The mitochondrial inner membrane peptidase IMP of Saccharomyces cerevisiae is required for proteolytic processing of certain mitochondrially and nucleus-encoded proteins during their export from the matrix into the inner membrane or the intermembrane space. The membrane-associated signal peptidase complex is composed of the two catalytic subunits, Imp1 and Imp2, and the Som1 protein. The IMP subunits are thought to function in membrane association, interaction and stabilisation of subunits, substrate specificity, and proteolysis. We have analysed inner membrane peptidase mutants and substrates to gain more insight into the functions of various domains and investigate the basis of substrate recognition. The results suggest that certain conserved glycine residues in the second and third conserved regions of Imp1 and Imp2 are important for stabilisation of the Imp complex and for the proteolytic activity of the subunits, respectively. The non-conserved C-terminal parts of the Imp subunits are important for their proteolytic activities. The C-terminal region of Imp2, comprising a predicted second transmembrane segment, is dispensable for the stability of Imp2 and Imp1, and cannot functionally substitute for the C-terminal segment of Imp1. Alteration of the Imp2 cleavage site in cytochrome c 1 (from A↓M to N↓D) reveals the specificity of the Imp2 peptidase. In addition, we have identified Gut2, the mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase, as a new substrate for Imp1. Failure to cleave the Gut2 precursor may contribute to the pet phenotype of certain imp mutants. Gut2 is associated with the inner membrane, and is essential for growth on glycerol-containing medium. Suggested functions of the analysed residues and domains of the IMP subunits, characteristics of the cleavage sites of substrates and implications for the phenotypes of imp mutants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3a–c
Fig. 4a, b
Fig. 5

Similar content being viewed by others

References

  • Arnold I, Pfeiffer K, Neupert W, Stuart RA, Schägger H (1999) ATP synthase of yeast mitochondria. Isolation of subunit j and disruption of the ATP18 gene. J Biol Chem 274:36–40

    Article  CAS  PubMed  Google Scholar 

  • Bauerfeind M, Esser K, Michaelis G (1998) The Saccharomyces cerevisiae SOM1 gene: heterologous complementation studies, homologues in other organisims and association of the gene product with the inner mitochondrial membrane. Mol Gen Genet 257:635–640

    Article  CAS  PubMed  Google Scholar 

  • Behrens M, Michaelis G, Pratje E (1991) Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase. Mol Gen Genet 228:167–176

    CAS  PubMed  Google Scholar 

  • Bolivar F, Rodriguez RL, Green PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S (1977) Construction and characterization of new cloning vehicles. Gene 2:95–113

    CAS  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  PubMed  Google Scholar 

  • Broadley SA, Demlow CM, Fox TD (2001) Peripheral mitochondrial inner membrane protein, Mss2p, required for export of the mitochondrially coded Cox2p C tail in Saccharomyces cerevisiae. Mol Cell Biol 21:7663–7672

    Article  CAS  PubMed  Google Scholar 

  • Capaldi RA, Malatesta F, Darley-Usmar VM (1983) Structure of cytochrome c oxidase. Biochim Biophys Acta 726:135–148

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Van Valkenburgh C, Fang H, Green N (1999) Signal peptides having standard and nonstandard cleavage sites can be processed by Imp1p of the mitochondrial inner membrane protease. J Biol Chem 274:37750–37754

    Article  CAS  PubMed  Google Scholar 

  • Dalbey RE, Lively MO, Bron S, van Dijl JM (1997) The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138

    CAS  PubMed  Google Scholar 

  • Esser K, Pratje E, Michaelis G (1996) SOM1, a small new gene required for mitochondrial inner membrane peptidase function in Saccharomyces cerevisiae. Mol Gen Genet 252:437–445

    Article  CAS  PubMed  Google Scholar 

  • Esser K, Scholle B, Michaelis G (1999) Disruption of six open reading frames on chromosome X of Saccharomyces cerevisiae reveals a cluster of four essential genes. Yeast 15:921–933

    Article  CAS  PubMed  Google Scholar 

  • Gasser SM, Ohashi A, Daum G, Böhni PC, Gibson J, Reid GA, Yonetani T, Schatz G (1982) Imported mitochondrial proteins cytochrome b2 and cytochrome c1 are processed in two steps. Proc Natl Acad Sci USA 79:267–271

    CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360

    CAS  PubMed  Google Scholar 

  • Hahne K, Haucke V, Ramage L, Schatz G (1994) One gene encodes two isoforms of NADH-cytochrome b5 reductase in different mitochondrial subcompartments. Cell 79:829–839

    CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  • Hell K, Herrmann JM, Pratje E, Neupert W, Stuart RA (1998) Oxa1p, an essential component of the N-tail protein export machinery in mitochondria. Proc Natl Acad Sci USA 95:2250–2255

    CAS  PubMed  Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast/ E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167

    CAS  PubMed  Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) (1990) PCR protocols: a guide to methods and applications. Academic Press, San Diego

    Google Scholar 

  • Jan PS, Esser K, Pratje E, Michaelis G (2000) Som1, a third component of the yeast mitochondrial inner membrane peptidase complex that contains Imp1 and Imp2. Mol Gen Genet 263:483–491

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Chen X, Fang H, Green N (2003) Factors governing nonoverlapping substrate specificity by mitochondrial inner membrane peptidase. J Biol Chem 278:4943–4948

    Article  CAS  PubMed  Google Scholar 

  • Meyer W, Bömer U, Pratje E (1997) Mitochondrial inner membrane-bound Pet1402 protein is rapidly imported into mitochondria and affects the integrity of the cytochrome oxidase and ubiquinol-cytochrome c oxidoreductase complexes. Biol Chem 378:1373–1379

    Google Scholar 

  • Michaelis G, Mannhaupt G, Pratje E, Fischer E, Naggert J, Schweizer E (1982) Mitochondrial translation products in nuclear respiration-deficient pet mutants of Saccharomyces cerevisiae. In: Slonimski PP, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 311–321

  • Nasmyth KA, Reed SI (1980) Isolation of genes by complementation in yeast: molecular cloning of a cell cycle gene. Proc Natl Acad Sci USA 77:2119–2123

    CAS  PubMed  Google Scholar 

  • Nunnari J, Fox TD, Walter PA (1993) A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262:1997–2004

    CAS  PubMed  Google Scholar 

  • Pratje E, Guiard B (1986) One nuclear gene controls the removal of transient pre-sequences from two yeast proteins: one encoded by the nuclear, the other by the mitochondrial genome. EMBO J 5:1313–1317

    CAS  PubMed  Google Scholar 

  • Pratje E, Michaelis G (1977) Allelism studies of mitochondrial mutants resistant to antimycin A or funiculosin in Saccharomyces cerevisiae. Mol Gen Genet 152:167–174

    CAS  Google Scholar 

  • Pratje E, Mannhaupt G, Michaelis G, Beyreuter K (1983) A nuclear mutation prevents processing of a mitochondrially encoded membrane protein in Saccharomyces cerevisiae. EMBO J 2:1049–1054

    CAS  PubMed  Google Scholar 

  • Riesmeier JW, Hirner B, Frommer WB (1993) Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 11:1591–1598

    Article  Google Scholar 

  • Ronnow B, Kielland-Brandt MC (1993) GUT2, a gene for mitochondrial glycerol 3-phosphate dehydrogenase of Saccharomyces cerevisiae. Yeast 9:1121–1130

    CAS  PubMed  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Meth. Enzymol. 101:202–211

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schneider A, Behrens M, Scherer P, Pratje E, Michaelis G, Schatz G (1991) Inner membrane protease I, an enzyme mediating intramitochondrial protein sorting in yeast. EMBO J 10:247–254

    CAS  PubMed  Google Scholar 

  • Tjalsma H, Stover AG, Driks A, Venema G, Bron S, van Dijl JM (2000) Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis. J Biol Chem. 275:25102–25108

    Google Scholar 

  • Tschantz WR, Sung M, Delgado-Partin VM, Dalbey RE (1993) A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase. J Biol Chem 268:27349–27354

    CAS  PubMed  Google Scholar 

  • Van Dijl JM, de Jong A, Vehmaanpera J, Venema G, Bron S (1992) Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J 11:2819–2828

    PubMed  Google Scholar 

  • Van Dijl JM, de Jong A, Venema G, Bron S (1995) Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis. Structural and functional similarities with LexA-like proteases. J Biol Chem 270:3611–3618

    Article  PubMed  Google Scholar 

  • Von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690

    PubMed  Google Scholar 

  • Winston F, Dollard C, Ricupero-Hovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55

    CAS  PubMed  Google Scholar 

  • Yaffe MP, Schatz G (1984) Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci USA 81:4819–4823

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC vectors. Gene 33:103–119

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Diana Smarandache for initial cloning experiments, Barbara Schumacher for careful technical assistance, and Drs. G. Schatz, B. Guiard and H. Weiss for providing antisera against Imp1, Cytb2 and Cytc1, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pratje.

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esser, K., Jan, PS., Pratje, E. et al. The mitochondrial IMP peptidase of yeast: functional analysis of domains and identification of Gut2 as a new natural substrate. Mol Genet Genomics 271, 616–626 (2004). https://doi.org/10.1007/s00438-004-1011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1011-y

Keywords

Navigation