Skip to main content
Log in

Evolutionary relationships of Metchnikovella dogieli Paskerova et al., 2016 (Microsporidia: Metchnikovellidae) revealed by multigene phylogenetic analysis

  • Genetics, Evolution, and Phylogeny - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The species Metchnikovella dogieli (Paskerova et al. Protistology 10:148–157, 2016) belongs to one of the early diverging microsporidian groups, the metchnikovellids (Microsporidia: Metchnikovellidae). In relation to typical (‘core’) microsporidia, this group is considered primitive. The spores of metchnikovellids have no classical polar sac-anchoring disk complex, no coiled polar tube, no posterior vacuole, and no polaroplast. Instead, they possess a short thick manubrium that expands into a manubrial cistern. These organisms are hyperparasites; they infect gregarines that parasitise marine invertebrates. M. dogieli is a parasite of the archigregarine Selenidium pygospionis (Paskerova et al. Protist 169:826–852, 2018), which parasitises the polychaete Pygospio elegans. This species was discovered in samples collected in the silt littoral zone at the coast of the White Sea, North-West Russia, and was described based on light microscopy. No molecular data are available for this species, and the publicly accessible genomic data for metchnikovellids are limited to two species: M. incurvata Caullery & Mesnil, 1914 and Amphiamblys sp. WSBS2006. In the present study, we applied single-cell genomics methods with whole-genome amplification to perform next-generation sequencing of M. dogieli genomic DNA. We performed a phylogenetic analysis based on the SSU rRNA gene and reconstructed a multigene phylogeny using a concatenated alignment that included 46 conserved single-copy protein domains. The analyses recovered a fully supported clade of metchnikovellids as a basal group to the core microsporidia. Two members of the genus Metchnikovella did not form a clade in our tree. This may indicate that this genus is paraphyletic and requires revision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The dataset used in this study is deposited with the GeneBank under the accession numbers: MT969020 (SSU rDNA), MT951446, MW052334-MW052379 (protein-coding genes).

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, Kulikov AS, Lesin V, Nikolenko S, Pham S, Prjibelski A, Pyshkin A, Sirotkin A, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass D, Czech L, Williams BAP, Berney C, Dunthorn M, Mahé F, Torruella G, Stentiford GD, Williams TA (2018) Clarifying the relationships between microsporidia and cryptomycota. J Eukaryot Microbiol 65:773–782. https://doi.org/10.1111/jeu.12519

    Article  PubMed  PubMed Central  Google Scholar 

  • Becnel JJ, Takvorian PM, Cali A (2014) Checklist of available generic names for Microsporidia with type species and type hosts. In: Weiss LM, Becnel JJ (eds) Microsporidia: pathogens of opportunity. John Wiley & Sons, Inc., Ames, Iowa, pp 671–686. https://doi.org/10.1002/9781118395264.app1

    Chapter  Google Scholar 

  • Cali A, Becnel JJ, Takvorian PM (2017) Microsporidia. In: Archibald JM et al (eds) Handbook of the protists, 2nd edn. Springer, Cham, Switzerland, pp 1559–1618. https://doi.org/10.1007/978-3-319-28149-0_27

    Chapter  Google Scholar 

  • Canning E, Vávra J (2000) Phylum Microsporida Balbiani, 1882. In: Lee JJ et al (eds) An illustrated guide to the protozoa: organisms traditionally referred to as protozoa, or newly discovered groups, vol 1, 2nd edn. Allen Press, Lawrence, Kan, pp 39–126

    Google Scholar 

  • Caullery M, Mesnil F (1897) Sur un type nouveau (Metchnikovella n.g.) d’organismes parasites des grégarines. C R Séances Soc Biol 4(49):960–962

    Google Scholar 

  • Caullery M, Mesnil F (1914) Sur les Metchnikovellidae et autres Protistes parasites des Grégarines d’Annélides. C R Séances Soc Biol 2(77):527–532

    Google Scholar 

  • Caullery M, Mesnil F (1919) Metchnikovellidae et autres Protistes parasites des Grégarines d’ Annélides. Ann Inst Pasteur 33(4):209–240

    Google Scholar 

  • Corsaro D, Michel R, Walochnik J, Venditti D, Müller KD, Hauröder B, Wylezich C (2016) Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the Microsporidia. Parasitol Res 115:3003–3011. https://doi.org/10.1007/s00436-016-5055-9

    Article  PubMed  Google Scholar 

  • Corsaro D, Wylezich C, Venditti D, Michel R, Walochnik J, Wegensteiner R (2018) Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida). Parasitol Res 118(1):169–180. https://doi.org/10.1007/s00436-018-6130-1

    Article  PubMed  Google Scholar 

  • Corsaro D, Walochnik J, Venditti D, Hauröder B, Michel R (2020) Solving an old enigma: Morellospora saccamoebae gen. nov., sp. nov. (Rozellomycota), a Sphaerita-like parasite of free-living amoebae. Parasitol Res 119(3):925–934. https://doi.org/10.1007/s00436-020-06623-5

    Article  PubMed  Google Scholar 

  • Desportes I, Théodoridès J (1979) Étude ultrastructurale d’Amphiamblys laubieri n. sp. (Microsporidie, Metchnikovellidae) parasite d’une Grégarine (Lecudina sp.) d’un Echiurien abyssal. Protistologica 15:435–457

    Google Scholar 

  • Dogiel VA (1922) Sur un nouveau genre de Metchnikovellidae. Ann Inst Pasteur 36:574–577

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo LJ, Torruella G, Moreira D, Timpano H, Paskerova G, Smirnov A, Nassonova E, López-García P (2018) Evolutionary genomics of Metchnikovella incurvata (Metchnikovellidae): an early branching microsporidium. Genome Biol Evol 10:2736–2748. https://doi.org/10.1093/gbe/evy205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. https://doi.org/10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  • Grossart H-P, Wurzbacher C, James TY, Kagami M (2016) Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecol 19:28–38. https://doi.org/10.1016/j.funeco.2015.06.004

    Article  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issi IV (1986) Microsporidia as a phylum of parasitic protozoa. In: Beyer TV and Issi IV (eds) Microsporidia. Series Protozoologiya, Vol 10, Nauka, Leningrad, pp 6–136 (in Russian with English summary)

  • Issi IV, Voronin VN (2007) Phylum Microsporidia Balbiani 1882. In: Frolov AO and Krylov MV (eds) Protista: handbook on zoology. Pt 2, Nauka, St. Petersburg, pp 994–1045 (in Russian with English summary)

  • Keeling PJ, Fast NM, Corradi N (2014) Microsporidian genome structure and function. In: Weiss LM, Becnel JJ (eds) Microsporidia: pathogens of opportunity. John Wiley & Sons, Inc., Ames, Iowa, pp 221–229. https://doi.org/10.1002/9781118395264.ch7

    Chapter  Google Scholar 

  • Larsson JIR (2014) The primitive microsporidia. In: Weiss LM, Becnel JJ (eds) Microsporidia pathogens of opportunity. John Wiley & Sons, Inc., Ames, Iowa, pp 605–634. https://doi.org/10.1002/9781118395264.ch24

    Chapter  Google Scholar 

  • Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21(6):1095–1109. https://doi.org/10.1093/molbev/msh112

    Article  CAS  PubMed  Google Scholar 

  • Lazarus KL, James TY (2015) Surveying the biodiversity of the Cryptomycota using a targeted PCR approach. Fungal Ecol 14:62–70. https://doi.org/10.1016/j.funeco.2014.11.004

    Article  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map (SAM) format and SAMtools. Transplant Proc 19:1653–1654. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  Google Scholar 

  • Mikhailov KV, Simdyanov TG, Aleoshin VV (2017) Genomic survey of a hyperparasitic microsporidian Amphiamblys sp. (Metchnikovellidae). Genome Biol Evol 9:454–467. https://doi.org/10.1093/gbe/evw235

    Article  CAS  PubMed  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 Gateway Computing Environments Workshop (GCE). Presented at the 2010 Gateway Computing Environments Workshop (GCE), IEEE, New Orleans, LA, USA, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129

  • Nassonova E, Moreira D, Torruella G, Timpano H, Paskerova G, Smirnov A, Lopez-Garcia P (2016) Phylogenomic insights on the evolution of metchnikovellids. Protistology 10:52

    Google Scholar 

  • Ormières R, Loubès C, Maurand J (1981) Amphiamblys bhatiellae n. sp., Microsporidie parasite de Bhatiella marphysae Setna, 1931, Eugrégarine d’Annelide Polychète. Protistologica 17:273–280

    Google Scholar 

  • Paskerova GG, Frolova EV, Kováčiková M, Panfilkina TS, Mesentsev YS, Smirnov AV, Nassonova ES (2016) Metchnikovella dogieli sp. n. (Microsporidia: Metchnikovellida), a parasite of archigregarines Selenidium sp. from polychaetes Pygospio elegans. Protistology 10(4):148–157. https://doi.org/10.21685/1680-0826-2016-10-4-4

    Article  Google Scholar 

  • Paskerova GG, Miroliubova TS, Diakin A, Kováčiková M, Valigurová A, Guillou L, Aleoshin VV, Simdyanov TG (2018) Fine structure and molecular phylogenetic position of two marine gregarines, Selenidium pygospionis sp. n. and S. pherusae sp. n., with notes on the phylogeny of Archigregarinida (Apicomplexa). Protist 169(6):826–852. https://doi.org/10.1016/j.protis.2018.06.004

    Article  PubMed  Google Scholar 

  • Reichenow E (1932) Sporozoa. In: Grimpe G and Wagler E (eds) Die Tierwelt der Nord- und Ostsee. 21(II). Leipzig, Akademische Verlagsgesellschaft, g1–g48

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Schereschevsky H (1924) La famille Metchnikovellidae (C.& M.) et la place qu’elle occupe dans le Systéms de Protistes. Arch Russ Protistol 3:137–145 (in Russian with French summary)

    Google Scholar 

  • Schrével J, Desportes I (2013) Biology of gregarines and their host-parasite interactions. Ch 2 in: Desportes I and Schrével J (eds) Treatise on zoology–anatomy, taxonomy, biology. The gregarines. BRILL, Leiden, Boston, pp 25–195. https://doi.org/10.1163/9789004256057_004

  • Sokolova YY, Paskerova GG, Rotari YM, Nassonova ES, Smirnov AV (2013) Fine structure of Metchnikovella incurvata Caullery and Mesnil, 1914 (Microsporidia), a hyperparasite of gregarines Polyrhabdina sp. from the polychaete Pygospio elegans. Parasitology 140:855–867. https://doi.org/10.1017/S0031182013000036

    Article  CAS  PubMed  Google Scholar 

  • Sprague V (1977) Classification and phylogeny of microsporidia. In: Bulla LA, Cheng TC (eds) Comparative pathobiology, vol 2. Plenum Press, New York, pp 1–30

    Google Scholar 

  • Sprague V, Becnel JJ, Hazard EI (1992) Taxonomy of phylum Microspora. Crit Rev Microbiol 18(5–6):285–395. https://doi.org/10.3109/10408419209113519

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stentiford GD, Ramilo A, Abollo E, Kerr R, Bateman KS, Feist SW, Bass D, Villalba A (2017) Hyperspora aquatica n.gn., n.sp. (Microsporidia), hyperparasitic in Marteilia cochillia (Paramyxida), is closely related to crustacean-infecting microspordian taxa. Parasitology 144:186–199. https://doi.org/10.1017/S0031182016001633

    Article  CAS  PubMed  Google Scholar 

  • Stubblefield JW (1955) The morphology and life history of Amphiacantha ovalis and A. attenuata, two new haplosporidian parasites of gregarines. J Parasitol 41(5):443–459

    Article  CAS  PubMed  Google Scholar 

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. https://doi.org/10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  • Torruella G, Derelle R, Paps J, Lang BF, Roger AJ, Shalchian-Tabrizi K, Ruiz-Trillo I (2012) Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol Biol Evol 29(2):531–544. https://doi.org/10.1093/molbev/msr185

    Article  CAS  PubMed  Google Scholar 

  • Vávra J, Larsson JIR (2014) Structure of Microsporidia. In: Weiss LM, Becnel JJ (eds) Microsporidia pathogens of opportunity. John Wiley & Sons, Inc., Ames, Iowa, pp 1–70. https://doi.org/10.1002/9781118395264.ch1

    Chapter  Google Scholar 

  • Vávra J, Lukeš J (2013) Microsporidia and ‘the art of living together’. In: Rollinson D (ed) Advances in parasitology. Academic Press, pp 253–319. https://doi.org/10.1016/B978-0-12-407706-5.00004-6

  • Vivier E (1975) The Microsporidia of the Protozoa. Protistologica 11(3):345–361

    Google Scholar 

  • Vivier E, Schrével J (1973) Étude en microscopie photonique et électronique de différents stades du cycle de Metchnikovella hovassei et observations sur la position systématique des Metchnikovellidae. Protistologica 9:95–118

    Google Scholar 

  • Vossbrinck CR, Debrunner-Vossbrinck BA, Weiss LM (2014) Phylogeny of the Microsporidia. In: Weiss LM, Becnel JJ (eds) Microsporidia: pathogens of opportunity. John Wiley & Sons, Inc., Ames, Iowa, pp 203–220. https://doi.org/10.1002/9781118395264.ch6

    Chapter  Google Scholar 

  • Weiss LM, Becnel JJ (eds) (2014) Microsporidia: pathogens of opportunity. John Wiley and Sons, Inc., Ames, Iowa. https://doi.org/10.1002/9781118395264

    Book  Google Scholar 

  • Weiss LM, Vossbrinck CR (1999) Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the Microsporidia. In: Wittner M, Weiss L (eds) The Microsporidia and microsporidiosis. Amer Soc Microbiol, Washington D.C., pp 129–171

    Google Scholar 

  • Williams BAP, Hamilton KM, Jones MD, Bass D (2018) Group-specific environmental sequencing reveals high levels of ecological heterogeneity across the microsporidian radiation: ecological heterogeneity in the microsporidia. Environ Microbiol 10:328–336. https://doi.org/10.1111/1758-2229.12642

    Article  Google Scholar 

  • Zhu X, Wittner M, Tanowitz HB, Kotler D, Cali A, Weiss LM (1993) Small subunit rRNA sequence of Enterocytozoon bieneusi and its potential diagnostic role with use of the polymerase chain reaction. J Infect Dis 168:1570–1575. https://doi.org/10.1093/infdis/168.6.1570

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the White Sea Biological Station of M. V. Lomonosov Moscow State University for providing facilities for field sampling and material processing, as well as for their kind and friendly approach. The authors also thank Guifré Torruella, Luis Javier Galindo, Hélène Timpano, David Moreira, and Purificación López-García (Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France) for the alignments of conserved single-copy protein domains used for the phylogenomic analysis and for sharing their expertise in performing of single-cell genomics. This study utilised equipment of the Core Facility Centres ‘Biobank’, ‘Development of Molecular and Cell Technologies’, and ‘Culture Collection of Microorganisms’ of the Research Park of Saint Petersburg State University.

Funding

This study was financially supported by the Russian Science Foundation—project no. 19-74-20136 (phylogenetic analyses, bioinformatics and data treatment) and by the Russian Foundation for Basic Research—projects no. 18-04-01359 (light microscopy, molecular work, NGS sequencing). Financial support for fieldwork of GP was provided in part by St. Petersburg State University—grant no. 1.42.1099.2016. The fieldwork of MK was supported by the Czech Science Foundation, project no. GBP505/12/G112 (ECIP).

Author information

Authors and Affiliations

Authors

Contributions

Elena Nassonova and Alexey Smirnov suggested an overall concept and design of the study, performed molecular phylogeny and phylogenomics, and drafted the manuscript; Gita Paskerova, Ekaterina Frolova, and Magdaléna Kováčiková performed the field work, dissections of polychaetes, and isolation of the parasites; Alexey Smirnov and Gita Paskerova did light microscopy and single-cell manipulations; Elena Nassonova conducted molecular studies; Natalya Bondarenko performed bioinformatic treatment of NGS data. All authors contributed to the improvement of the draft and accepted the final version of the manuscript.

Corresponding author

Correspondence to Elena S. Nassonova.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or warm-blooded animals performed by any of the authors. The White Sea Biological Station of M. V. Lomonosov Moscow State University has permission to collect invertebrate animals for scientific work on its own territory and other sites situated around the station. The invertebrates of interest are neither endangered nor protected species within the region. Animal handling and dissecting was performed at cold temperature to avoid distress and unnecessary suffering.

Consent for publication

All the authors mentioned in the manuscript have agreed for authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript.

Code availability (software application or custom code)

FastQC http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Trimmomatic http://www.usadellab.org/cms/?page=trimmomatic

SPAdes v.3.13.0 http://cab.spbu.ru/files/release3.13.0/manual.html

QUAST http://cab.spbu.ru/software/quast/

SAMtools http://samtools.sourceforge.net

SeaView 4.6.1 http://doua.prabi.fr/software/seaview

BLASTx https://blast.ncbi.nlm.nih.gov/Blast.cgi?LINK_LOC=blasthome&PAGE_TYPE=BlastSearch&PROGRAM=blastx

RAxML-HPC2 on XSEDE (v.8.2.12) https://www.phylo.org

MrBayes v.3.2.6 http://www.phylo.org

PhyloBayes MPI on XSEDE (v.1.4f) http://www.phylo.org/tools/obsolete/phylobayes_xsede.html

Additional information

Handling Editor: Julia Walochnik

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassonova, E.S., Bondarenko, N.I., Paskerova, G.G. et al. Evolutionary relationships of Metchnikovella dogieli Paskerova et al., 2016 (Microsporidia: Metchnikovellidae) revealed by multigene phylogenetic analysis. Parasitol Res 120, 525–534 (2021). https://doi.org/10.1007/s00436-020-06976-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06976-x

Keywords

Navigation