Skip to main content

Advertisement

Log in

First report of Toxoplasma gondii sporulated oocysts and Giardia duodenalis in commercial green-lipped mussels (Perna canaliculus) in New Zealand

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Pollution of marine ecosystems with the protozoan parasites Toxoplasma gondii, Cryptosporidium spp. and Giardia duodenalis can be studied using bivalve shellfish as biosentinels. Although evidence suggests that these parasites are present in New Zealand coastal waters, the extent of protozoal pollution has not been investigated. This study used optimised molecular methods to detect the presence of Cryptosporidium spp., G. duodenalis and T. gondii in commercially sourced green-lipped mussel (Perna canaliculus), an endemic species found throughout coastal New Zealand. A nested polymerase chain reaction was validated for detection of T. gondii DNA and applied to 104 commercially sourced mussels. Thirteen mussels were positive for T. gondii DNA with an estimated true prevalence of 16.4% using Bayesian statistics, and the presence of T. gondii in mussels was significantly associated with collection during the summer compared with that in the winter (P = 0.003). Consumption of contaminated shellfish may also pose a health risk for humans and marine wildlife. As only sporulated T. gondii oocysts can be infectious, a reverse transcriptase-polymerase chain reaction was used to confirm presence of a sporozoite-specific marker (SporoSAG), detected in four mussels. G. duodenalis assemblage B, known to be pathogenic in humans, was also discovered in 1% mussels, tested by polymerase chain reaction (n = 90). Cryptosporidium spp. was not detected in the sampled mussel haemolymph. Results suggest that New Zealand may have high levels of coastal contamination with T. gondii, particularly in summer months, and that naturally exposed mussels can ingest and retain sporulated oocysts, further establishing shellfish consumption as a health concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abeywardena H, Jex AR, Nolan MJ et al (2012) Genetic characterisation of Cryptosporidium and Giardia from dairy calves: discovery of species/genotypes consistent with those found in humans. Infect Genet Evol 12:1984–1993

    Article  CAS  PubMed  Google Scholar 

  • Adell AD, Smith WA, Shapiro K, Melli A, Conrad PA (2014) Molecular epidemiology of Cryptosporidium spp. and Giardia spp. in mussels (Mytilus californianus) and California sea lions (Zalophus californianus) from Central California. Appl Environ Microbiol 80:7732–7740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aksoy U, Marangi M, Papini R, Ozkoc S, Bayram Delibas S, Giangaspero A (2014) Detection of Toxoplasma gondii and Cyclospora cayetanensis in Mytilus galloprovincialis from Izmir Province coast (Turkey) by real time PCR/high-resolution melting analysis (HRM). Food Microbiol 44:128–135

    Article  CAS  PubMed  Google Scholar 

  • Alves M, Xiao L, Sulaiman I, Lal AA, Matos O, Antunes F (2003) Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol 41:2744–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RCA (2004) The zoonotic significance and molecular epidemiology of Giardia and giardiasis. Vet Parasitol 126:15–35

    Article  PubMed  Google Scholar 

  • Arkush KD, Miller MA, Leutenegger CM, Gardner IA, Packham AE, Heckeroth AR, Tenter AM, Barr BC, Conrad PA (2003) Molecular and bioassay-based detection of Toxoplasma gondii oocyst uptake by mussels (Mytilus galloprovincialis). Int J Parasitol 33:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Aspinall TV, Joynson DHM, Guy E, Hyde JE, Sims PFG (2002a) The molecular basis of sulfonamide resistance in Toxoplasma gondii and implications for the clinical management of toxoplasmosis. J Infect Dis 185:1637–1643

    Article  CAS  PubMed  Google Scholar 

  • Aspinall TV, Marlee D, Hyde JE, Sims PFG (2002b) Prevalence of Toxoplasma gondii in commercial meat products as monitored by polymerase chain reaction—food for thought? Int J Parasitol 32:1193–1199

    Article  PubMed  Google Scholar 

  • Betancourt WQ, Duarte DC, Vásquez RC, Gurian PL (2014) Cryptosporidium and Giardia in tropical recreational marine waters contaminated with domestic sewage: estimation of bathing-associated disease risks. Mar Pollut Bull 85:268–273

    Article  CAS  PubMed  Google Scholar 

  • Bowie WR, King AS, Werker DH, Isaac-Renton JL, Bell A, Eng SB, Marion SA (1997) Outbreak of toxoplasmosis associated with municipal drinking water. Lancet 350:173–177

    Article  CAS  PubMed  Google Scholar 

  • Branscum AJ, Gardner IA, Johnson WO (2005) Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling. Prev Vet Med 68:145–163

    Article  CAS  PubMed  Google Scholar 

  • Brown TJ, Donaghy MJ, Keys EA, Ionas G, Learmonth JJ, McLenachan PA, Clarke JK (1999) The viability of Giardia intestinalis and Giardia muris cysts in seawater. Int J Environ Health Res 9:157–161

    Article  Google Scholar 

  • Brown TJ, Hastie JC, Kelly PJ et al (1992) Presence and distribution of Giardia cysts in New Zealand waters. N Z J Mar Freshwater Res 26:279–282

    Article  Google Scholar 

  • Chiang T-Y, Kuo M-C, Chen C-H, Yang JY, Kao CF, Ji DD, Fang CT (2014) Risk factors for acute Toxoplasma gondii diseases in Taiwan: a population-based case-control study. PLoS One 9:e90880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrad PA, Atwill ER, Gardner IA, et al (2005) Cryptosporidium in bivalves as indicators of fecal pollution in the California coastal ecosystem

  • Costa J-M, Bretagne S (2012) Variation of B1 gene and AF146527 repeat element copy numbers according to Toxoplasma gondii strains assessed using real-time quantitative PCR. J Clin Microbiol 50:1452–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabritz HA, Atwill ER, Gardner IA, Miller MA, Conrad PA (2006) Outdoor fecal deposition by free-roaming cats and attitudes of cat owners and nonowners toward stray pets, wildlife, and water pollution. J Am Vet Med Assoc 229:74–81

    Article  PubMed  Google Scholar 

  • Dabritz HA, Conrad PA (2010) Cats and Toxoplasma: implications for public health. Zoonoses Public Health 57:34–52

    Article  CAS  PubMed  Google Scholar 

  • Dorai-Raj S (2014) binom: binomial confidence intervals for several parameterizations. R package version 1.1-1. https://CRAN.R-project.org/package=binom

  • Downey AS, Graczyk TK (2007) Maximizing recovery and detection of Cryptosporidium parvum oocysts from spiked eastern oyster (Crassostrea virginica) tissue samples. Appl Environ Microbiol 73:6910–6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey JP, Jones JL (2008) Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol 38:1257–1278

    Article  CAS  PubMed  Google Scholar 

  • Dubey JP, Lindsay DS, Speer CA (1998) Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev 11:267–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey JP, Miller NL, Frenkel JK (1970) The Toxoplasma gondii oocyst from cat feces. J Exp Med 132:636–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ene L, Marcotte TD, Umlauf A, Grancea C, Temereanca A, Bharti A, Achim CL, Letendre S, Ruta SM (2016) Latent toxoplasmosis is associated with neurocognitive impairment in young adults with and without chronic HIV infection. J Neuroimmunol 299:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esmerini PO, Gennari SM, Pena HFJ (2010) Analysis of marine bivalve shellfish from the fish market in Santos city, São Paulo state, Brazil, for Toxoplasma gondii. Vet Parasitol 170:8–13

    Article  PubMed  Google Scholar 

  • ESR (2017) The Institute of Environmental Science and Research Ltd. Notifiable Diseases in New Zealand: Annual Report 2016 Porirua, New Zealand. Available at: www.surv.esr.cri.nz

  • Farnworth MJ, Campbell J, Adams NJ (2010) Public awareness in New Zealand of animal welfare legislation relating to cats. N Z Vet J 58:213–217

    Article  CAS  PubMed  Google Scholar 

  • Fayer R (2004) Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol 126:37–56

    Article  PubMed  Google Scholar 

  • Fayer R, Dubey JP, Lindsay DS (2004) Zoonotic protozoa: from land to sea. Trends Parasitol 20:531–536

    Article  PubMed  Google Scholar 

  • Fayer R, Graczyk TK, Lewis EJ, Trout JM, Farley CA (1998) Survival of infectious Cryptosporidium parvum oocysts in seawater and eastern oysters (Crassostrea virginica) in the Chesapeake Bay. Appl Environ Microbiol 64:1070–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Xiao L (2011) Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev 24:110–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-R JC, French N, Pita A et al (2017) Local and global genetic diversity of protozoan parasites: spatial distribution of Cryptosporidium and Giardia genotypes. PLoS Negl Trop Dis 11:e0005736

    Article  PubMed  PubMed Central  Google Scholar 

  • Giangaspero A, Papini R, Marangi M, Koehler AV, Gasser RB (2014) Cryptosporidium parvum genotype IIa and Giardia duodenalis assemblage A in Mytilus galloprovincialis on sale at local food markets. Int J Food Microbiol 171:62–67

    Article  CAS  PubMed  Google Scholar 

  • Gilbert S, Lake R, Hudson A, Cressy P (2007) Risk profile: Cryptosporidium spp. in shellfish. Institute of Environmental Science & Research Limited. Report prepared as part of a New Zealand Food Safety Authority contract for scientific services. Available at: http://www.foodsafety.govt.nz/elibrary/industry/Risk_Profile_Cryptosporidium-Science_Research.pdf

  • Gómez-Couso H, Freire-Santos F, Amar CFL, Grant KA, Williamson K, Ares-Mazás ME, McLauchlin J (2004) Detection of Cryptosporidium and Giardia in molluscan shellfish by multiplexed nested-PCR. Int J Food Microbiol 91:279–288

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Couso H, Freire-Santos F, Martínez-Urtaza J, García-Martín O, Ares-Mazás ME (2003a) Contamination of bivalve molluscs by Cryptosporidium oocysts: the need for new quality control standards. Int J Food Microbiol 87:97–105

    Article  PubMed  Google Scholar 

  • Gómez-Couso H, Freire-Santos F, Ortega-Iñarrea MR, Castro-Hermida JA, Ares-Mazás ME (2003b) Environmental dispersal of Cryptosporidium parvum oocysts and cross transmission in cultured bivalve molluscs. Parasitol Res 90:140–142

    Article  PubMed  Google Scholar 

  • Gómez-Couso H, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E (2005) Giardia in shellfish-farming areas: detection in mussels, river water and waste waters. Vet Parasitol 133:13–18

    Article  PubMed  Google Scholar 

  • Graczyk TK, Thompson RC, Fayer R et al (1999) Giardia duodenalis cysts of genotype A recovered from clams in the Chesapeake Bay subestuary, Rhode River. Am J Trop Med Hyg 61:526–529

    Article  CAS  PubMed  Google Scholar 

  • Hall CM, Adams NA, Bradley JS, Bryant KA, Davis AA, Dickman CR, Fujita T, Kobayashi S, Lepczyk CA, McBride EA, Pollock KH, Styles IM, van Heezik Y, Wang F, Calver MC (2016) Community attitudes and practices of urban residents regarding predation by pet cats on wildlife: an international comparison. PLoS One 11:e0151962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hartley WJ, Bridge PS (1975) A case of suspected congenital Toxoplasma encephalomyelitis in a lamb associated with a spinal cord anomaly. Br Vet J 131(4):380–384

    Article  CAS  PubMed  Google Scholar 

  • Hohweyer J, Dumètre A, Aubert D et al (2013) Tools and methods for detecting and characterizing Giardia, Cryptosporidium, and Toxoplasma parasites in marine mollusks. J Food Prot 76:1649–1657

    Article  PubMed  Google Scholar 

  • Homan WL, Gilsing M, Bentala H, Limper L, van Knapen F (1998) Characterization of Giardia duodenalis by polymerase-chain-reaction fingerprinting. Parasitol Res 84:707–714

    Article  CAS  PubMed  Google Scholar 

  • Homan WL, Vercammen M, De Braekeleer J, Verschueren H (2000) Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol 30(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Howe L, Hunter S, Burrows E, Roe W (2014) Four cases of fatal toxoplasmosis in three species of endemic New Zealand birds. Avian Dis 58:171–175

    Article  PubMed  Google Scholar 

  • Hunt CL, Ionas G, Brown TJ (2000) Prevalence and strain differentiation of Giardia intestinalis in calves in the Manawatu and Waikato regions of North Island, New Zealand. Vet Parasitol 91:7–13

    Article  CAS  PubMed  Google Scholar 

  • Ionas G, Learmonth JJ, Keys EA, Brown TJ (1998) Distribution of Giardia and Cryptosporidium in natural water systems in New Zealand—a nationwide survey. Water Sci Technol 38:57–60

    Article  Google Scholar 

  • Iwamoto M, Ayers T, Mahon BE, Swerdlow DL (2010) Epidemiology of seafood-associated infections in the United States. Clin Microbiol Rev 23:399–411

    Article  PubMed  PubMed Central  Google Scholar 

  • James MR, Weatherhead MA, Ross AH (2001) Size-specific clearance, excretion, and respiration rates, and phytoplankton selectivity for the mussel Perna canaliculus at low levels of natural food. N Z J Mar Freshwater Res 35:73–86

    Article  Google Scholar 

  • Johnson DC, Reynolds KA, Gerba CP et al (1995) Detection of Giardia and Cryptosporidium in marine waters. Water Sci Technol 31:439–442

    Article  Google Scholar 

  • Jones JL, Dargelas V, Roberts J, Press C, Remington JS, Montoya JG (2009) Risk factors for Toxoplasma gondii infection in the United States. Clin Infect Dis 49:878–884

    Article  PubMed  Google Scholar 

  • Jones JL, Dubey JP (2010) Waterborne toxoplasmosis … recent developments. Exp Parasitol 124:10–25

    Article  CAS  PubMed  Google Scholar 

  • Karanis P, Aldeyarbi HM, Mirhashemi ME, Khalil KM (2013) The impact of the waterborne transmission of Toxoplasma gondii and analysis efforts for water detection: an overview and update. Environ Sci Pollut Res Int 20:86–99

    Article  PubMed  Google Scholar 

  • Kerambrun E, Palos Ladeiro M, Bigot-Clivot A, Dedourge-Geffard O, Dupuis E, Villena I, Aubert D, Geffard A (2016) Zebra mussel as a new tool to show evidence of freshwater contamination by waterborne Toxoplasma gondii. J Appl Microbiol 120:498–508

    Article  CAS  PubMed  Google Scholar 

  • King N, Lake R (2013) Bivalve shellfish harvesting and consumption in New Zealand, 2011: data for exposure assessment. N Z J Mar Freshw Res 47(1):62–72

    Article  Google Scholar 

  • Lal A, Baker MG, Hales S, French NP (2013) Potential effects of global environmental changes on cryptosporidiosis and giardiasis transmission. Trends Parasitol 29:83–90

    Article  PubMed  Google Scholar 

  • Learmonth JJ, Ionas G, Pita AB, Cowie RS (2003) Identification and genetic characterisation of Giardia and Cryptosporidium strains in humans and dairy cattle in the Waikato Region of New Zealand. Water Sci Technol 47:21–26

    Article  CAS  PubMed  Google Scholar 

  • Lemon J (2006) Plotrix: a package in the red light district of R. R-News 6(4):8–12

    Google Scholar 

  • Lindsay DS, Collins MV, Mitchell SM, Wetch CN, Rosypal AC, Flick GJ, Zajac AM, Lindquist A, Dubey JP (2004) Survival of Toxoplasma gondii oocysts in eastern oysters. J Parasitol 90:1054–1057

    Article  PubMed  Google Scholar 

  • Li N, Xiao L, Wang L, Zhao S, Zhao X, Duan L, Guo M, Liu L, Feng Y (2012) Molecular surveillance of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi by genotyping and subtyping parasites in wastewater. PLoS Negl Trop Dis 6:e1809

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucy FE, Graczyk TK, Tamang L, Miraflor A, Minchin D (2008) Biomonitoring of surface and coastal water for Cryptosporidium, Giardia, and human-virulent microsporidia using molluscan shellfish. Parasitol Res 103:1369–1375

    Article  PubMed  Google Scholar 

  • Marangi M, Giangaspero A, Lacasella V, Lonigro A, Gasser RB (2015) Multiplex PCR for the detection and quantification of zoonotic taxa of Giardia, Cryptosporidium and Toxoplasma in wastewater and mussels. Mol Cell Probes 29:122–125

    Article  CAS  PubMed  Google Scholar 

  • Marquis ND, Record NR, Robledo JAF (2015) Survey for protozoan parasites in Eastern oysters (Crassostrea virginica) from the Gulf of Maine using PCR-based assays. Parasitol Int 64:299–302

    Article  CAS  PubMed  Google Scholar 

  • Meneceur P, Bouldouyre M-A, Aubert D, Villena I, Menotti J, Sauvage V, Garin JF, Derouin F (2008) In vitro susceptibility of various genotypic strains of Toxoplasma gondii to pyrimethamine, sulfadiazine, and atovaquone. Antimicrob Agents Chemother 52:1269–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MA, Gardner IA, Kreuder C, Paradies DM, Worcester KR, Jessup DA, Dodd E, Harris MD, Ames JA, Packham AE, Conrad PA (2002) Coastal freshwater runoff is a risk factor for Toxoplasma gondii infection of southern sea otters (Enhydra lutris nereis). Int J Parasitol 32:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Miller MA, Miller WA, Conrad PA, James ER, Melli AC, Leutenegger CM, Dabritz HA, Packham AE, Paradies D, Harris M, Ames J, Jessup DA, Worcester K, Grigg ME (2008) Type X Toxoplasma gondii in a wild mussel and terrestrial carnivores from coastal California: new linkages between terrestrial mammals, runoff and toxoplasmosis of sea otters. Int J Parasitol 38:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Miller WA, Atwill ER, Gardner IA, Miller MA, Fritz HM, Hedrick RP, Melli AC, Barnes NM, Conrad PA (2005a) Clams (Corbicula fluminea) as bioindicators of fecal contamination with Cryptosporidium and Giardia spp. in freshwater ecosystems in California. Int J Parasitol 35:673–684

    Article  PubMed  Google Scholar 

  • Miller WA, Miller MA, Gardner IA, Atwill ER, Harris M, Ames J, Jessup D, Melli A, Paradies D, Worcester K, Olin P, Barnes N, Conrad PA (2005b) New genotypes and factors associated with Cryptosporidium detection in mussels (Mytilus spp.) along the California coast. Int J Parasitol 35:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Monis PT, Mayrhofer G, Andrews RH, Homan WL, Limper L, Ey PL (1996) Molecular genetic analysis of Giardia intestinalis isolates at the glutamate dehydrogenase locus. Parasitology 112(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Monis PT, Andrews RH, Mayrhofer G, Ey PL (2003) Genetic diversity within the morphological species Giardia intestinalis and its relationship to host origin. Infect Genet Evol 3:29–38

    Article  CAS  PubMed  Google Scholar 

  • New Zealand Companion Animal Council Inc. (2016) Companion Animals in New Zealand 2016. Author, Auckland. Available at: http://www.nzcac.org.nz/nzcac/nzcac-resources/nzcac-publications

  • Olson ME, Goh J, Phillips M, Guselle N, McAllister TA (1999) Giardia cyst and Cryptosporidium oocyst survival in water, soil, and cattle feces. J Environ Qual 28:1991–1996

    Article  CAS  Google Scholar 

  • Pashley TV, Volpe F, Pudney M, Hyde JE, Sims PFG, Delves CJ (1997) Isolation and molecular characterization of the bifunctional hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase gene from Toxoplasma gondii. Mol Biochem Parasitol 86(1):37–47

    CAS  PubMed  Google Scholar 

  • Patel KK, Howe L, Heuer C, Asher GW, Wilson PR (2017) Evaluation of Western blot, ELISA and latex agglutination tests to detect Toxoplasma gondii serum antibodies in farmed red deer. Vet Parasitol 244:154–159

    Article  CAS  PubMed  Google Scholar 

  • Peng MM, Matos O, Gatei W et al (2001) A comparison of Cryptosporidium subgenotypes from several geographic regions. J Eukaryot Microbiol Suppl 48:28S–31S

    Article  Google Scholar 

  • Putignani L, Mancinelli L, Del Chierico F et al (2011) Investigation of Toxoplasma gondii presence in farmed shellfish by nested-PCR and real-time PCR fluorescent amplicon generation assay (FLAG). Exp Parasitol 127:409–417

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL https://www.R-project.org/

    Google Scholar 

  • Radke JR, Gubbels M-J, Jerome ME, Radke JB, Striepen B, White MW (2004) Identification of a sporozoite-specific member of the Toxoplasma SAG superfamily via genetic complementation. Mol Microbiol 52:93–105

    Article  CAS  PubMed  Google Scholar 

  • Read CM, Monis PT, Thompson RCA (2004) Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol 4:125–130

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LA, Santos LKNSS, Brito PA Jr et al (2015) Detection of Toxoplasma gondii DNA in Brazilian oysters (Crassostrea rhizophorae). Genet Mol Res 14:4658–4665

    Article  CAS  PubMed  Google Scholar 

  • Robertson LJ (2007) The potential for marine bivalve shellfish to act as transmission vehicles for outbreaks of protozoan infections in humans: a review. Int J Food Microbiol 120:201–216

    Article  CAS  PubMed  Google Scholar 

  • Roe WD, Howe L, Baker EJ, Burrows L, Hunter SA (2013) An atypical genotype of Toxoplasma gondii as a cause of mortality in Hector’s dolphins (Cephalorhynchus hectori). Vet Parasitol 192:67–74

    Article  CAS  PubMed  Google Scholar 

  • Roe WD, Michael S, Fyfe J, Burrows E, Hunter SA, Howe L (2017) First report of systemic toxoplasmosis in a New Zealand sea lion (Phocarctos hookeri). N Z Vet J 65:46–50

    Article  CAS  PubMed  Google Scholar 

  • Ryan U, Cacciò SM (2013) Zoonotic potential of Giardia. Int J Parasitol 43:943–956

    Article  CAS  PubMed  Google Scholar 

  • Safi KA, Gibbs MM (2003) Importance of different size classes of phytoplankton in Beatrix Bay, Marlborough Sounds, New Zealand, and the potential implications for the aquaculture of the mussel, Perna canaliculus. N Z J Mar Freshwater Res 37:267–272

    Article  Google Scholar 

  • Scholes P, Greening G, Campbell D, Sim J, Gibbons-Davies J, Dohnt G, et al. (2009) Microbiological quality of shellfish in estuarine areas. Joint agency research report. Available at: http://www.ttophs.govt.nz/vdb/document/57

  • Shapiro K, Miller M, Mazet J (2012) Temporal association between land-based runoff events and California sea otter (Enhydra lutris nereis) protozoal mortalities. J Wildl Dis 48:394–404

    Article  PubMed  Google Scholar 

  • Shapiro K, VanWormer E, Aguilar B, Conrad PA (2015) Surveillance for Toxoplasma gondii in California mussels (Mytilus californianus) reveals transmission of atypical genotypes from land to sea. Environ Microbiol 17:4177–4188

    Article  CAS  PubMed  Google Scholar 

  • Shumway SE, Cucci TL, Newell RC, Yentsch CM (1985) Particle selection, ingestion, and absorption in filter-feeding bivalves. J Exp Mar Bio Ecol 91:77–92

    Article  Google Scholar 

  • Smith HV, Nichols RAB (2010) Cryptosporidium: detection in water and food. Exp Parasitol 124:61–79

    Article  PubMed  Google Scholar 

  • Snel SJ, Baker MG, Kamalesh V et al (2009) A tale of two parasites: the comparative epidemiology of cryptosporidiosis and giardiasis. Epidemiol Infect 137:1641–1650

    Article  CAS  PubMed  Google Scholar 

  • Staggs SE, Keely SP, Ware MW, Schable N, See MJ, Gregorio D, Zou X, Su C, Dubey JP, Villegas EN (2015) The development and implementation of a method using blue mussels (Mytilus spp.) as biosentinels of Cryptosporidium spp. and Toxoplasma gondii contamination in marine aquatic environments. Parasitol Res 114:4655–4667

    Article  PubMed  Google Scholar 

  • Su C, Shwab EK, Zhou P et al (2010) Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 137:1–11

    Article  CAS  PubMed  Google Scholar 

  • Sugden K, Moffitt TE, Pinto L, Poulton R, Williams BS, Caspi A (2016) Is Toxoplasma gondii infection related to brain and behavior impairments in humans? Evidence from a population-representative birth cohort. PLoS One 11:e0148435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sukthana Y (2006) Toxoplasmosis: beyond animals to humans. Trends Parasitol 22:137–142

    Article  PubMed  Google Scholar 

  • Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Till D, McBride G, Ball A, Taylor K, Pyle E (2008) Large-scale freshwater microbiological study: rationale, results and risks. J Water Health 6:443–460

    Article  PubMed  Google Scholar 

  • Toze S (1999) PCR and the detection of microbial pathogens in water and wastewater. Water Res 33:3545–3556

    Article  CAS  Google Scholar 

  • Travaillé E, La Carbona S, Gargala G et al (2016) Development of a qRT-PCR method to assess the viability of Giardia intestinalis cysts, Cryptosporidium spp. and Toxoplasma gondii oocysts. Food Control 59:359–365

    Article  CAS  Google Scholar 

  • VanWormer E, Carpenter TE, Singh P, Shapiro K, Wallender WW, Conrad PA, Largier JL, Maneta MP, Mazet JAK (2016) Coastal development and precipitation drive pathogen flow from land to sea: evidence from a Toxoplasma gondii and felid host system. Sci Rep 6:29252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanWormer E, Fritz H, Shapiro K, Mazet JAK, Conrad PA (2013/5) Molecules to modeling: Toxoplasma gondii oocysts at the human–animal–environment interface. Comp Immunol Microbiol Infect Dis 36:217–231

    Article  PubMed  Google Scholar 

  • VanWormer E, Miller MA, Conrad PA, Grigg ME, Rejmanek D, Carpenter TE, Mazet JAK (2014) Using molecular epidemiology to track Toxoplasma gondii from terrestrial carnivores to marine hosts: implications for public health and conservation. PLoS Negl Trop Dis 8:e2852

    Article  PubMed  PubMed Central  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourth edn. Springer, New York IBSN 0-387-95457-0

    Book  Google Scholar 

  • Verant ML, d’Ozouville N, Parker PG, Shapiro K, VanWormer E, Deem SL (2014) Attempted detection of Toxoplasma gondii oocysts in environmental waters using a simple approach to evaluate the potential for waterborne transmission in the Galápagos Islands, Ecuador. EcoHealth 11:207–214

    Article  PubMed  Google Scholar 

  • Villegas EN, Augustine SAJ, Villegas LF, Ware MW, See MJ, Lindquist HDA, Schaefer FW III, Dubey JP (2010) Using quantitative reverse transcriptase PCR and cell culture plaque assays to determine resistance of Toxoplasma gondii oocysts to chemical sanitizers. J Microbiol Methods 81:219–225

    Article  CAS  PubMed  Google Scholar 

  • Ware MW, Augustine SAJ, Erisman DO, See MJ, Wymer L, Hayes SL, Dubey JP, Villegas EN (2010) Determining UV inactivation of Toxoplasma gondii oocysts by using cell culture and a mouse bioassay. Appl Environ Microbiol 76:5140–5147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster JP, Kaushik M, Bristow GC, McConkey GA (2013) Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol 216:99–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Wells B, Shaw H, Innocent G, Guido S, Hotchkiss E, Parigi M, Opsteegh M, Green J, Gillespie S, Innes EA, Katzer F (2015) Molecular detection of Toxoplasma gondii in water samples from Scotland and a comparison between the 529bp real-time PCR and ITS1 nested PCR. Water Res 87:175–181

    Article  CAS  PubMed  Google Scholar 

  • West DM (2002) Ovine abortion in New Zealand. N Z Vet J 50:93–95

    Article  CAS  PubMed  Google Scholar 

  • Willis JE, McClure JT, Davidson J, McClure C, Greenwood SJ (2013) Global occurrence of Cryptosporidium and Giardia in shellfish: should Canada take a closer look? Food Res Int 52:119–135

    Article  Google Scholar 

  • Winkworth CL, Matthaei CD, Townsend CR (2008) Prevalence of Giardia and Cryptosporidium spp in calves from a region in New Zealand experiencing intensification of dairying. N Z Vet J 56:15–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Heather Fritz, Jeroen Saeij and David Arranz Solis for producing and generously providing T. gondii oocysts from the University of California, Davis. We are very grateful to Patricia Conrad, University California, Davis, for supporting collaboration with Massey University and also to Juan-Carlos Garcia Ramirez for providing scientific guidance on Giardia duodenalis in New Zealand.

Funding

Funding for this work was provided by the New Zealand Department of Conservation, the Massey University Research Foundation, the Lewis Fitch Foundation, the Marian Cunningham Memorial Fund and the New Zealand Ministry of Health. We acknowledge the financial support received from the IVABS Doctoral Scholarship, Massey University and the New Zealand International Doctoral Research Scholarship, Education New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Coupe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coupe, A., Howe, L., Burrows, E. et al. First report of Toxoplasma gondii sporulated oocysts and Giardia duodenalis in commercial green-lipped mussels (Perna canaliculus) in New Zealand. Parasitol Res 117, 1453–1463 (2018). https://doi.org/10.1007/s00436-018-5832-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5832-8

Keywords

Navigation