Skip to main content

Advertisement

Log in

The impact of the waterborne transmission of Toxoplasma gondii and analysis efforts for water detection: an overview and update

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The ubiquitous protozoa Toxoplasma gondii is now the subject of renewed interest, due to the spread of oocysts via water causing waterborne outbreaks of toxoplasmosis in different parts of the world. This overview discusses the different methods for detection of Toxoplasma in drinking and environmental water. It includes a combination of conventional and molecular tools for effective oocyst recovery and detection in water sources as well as factors hindering the detection of this parasite and shedding light on a promising new molecular assay for the diagnosis of Toxoplasma in environmental samples. Hopefully, this attempt will facilitate future approaches for better recovery, concentration, and detection of Toxoplasma oocysts in environmental waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhassan A, Thekisoe OMM, Yokoyama N, Inoue N, Motloang MY, Mbati PA, Yin H, Katayama Y, Anzai T, Sugimoto C, Igarashi I (2007) Development of loop-mediated isothermal amplification (LAMP) method for diagnosis of equine piroplasmosis. Vet Parasitol 143(2):155–160

    Article  Google Scholar 

  • Asthana SP, Macpherson C, Weiss S, Stephens R, Denny T, Sharma R, Dubey J (2006) Seroprevalence of Toxoplasma gondii in pregnant women and cats in Grenada, West Indies. J Parasitol 92(3):644–645

    Article  Google Scholar 

  • Aubert D, Villena I (2009) Detection of Toxoplasma gondii oocysts in water: proposition of a strategy and evaluation in Champagne-Ardenne Region, France. Mem Inst Oswaldo Cruz 104(2):290–295

    Article  CAS  Google Scholar 

  • AWWA Ed (1995) Standard methods for the examination of water and wastewater: Washington, DC

  • Bahia-Oliveira LMG, Jones JL, Azevedo-Silva J, Alves CCF, Oréfice F, Addiss DG (2003) Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerg Infect Dis 9(1):55–62

    Article  Google Scholar 

  • Balasundaram MB, Andavar R, Palaniswamy M, Venkatapathy N (2010) Outbreak of acquired ocular toxoplasmosis involving 248 patients. Arch Ophthalmol 128(1):28–32

    Article  Google Scholar 

  • Baldursson S, Karanis P (2011) Waterborne transmission of protozoan parasites: review of worldwide outbreaks—an update 2004–2010. Wat Res 45(20):6603–6614

    Article  CAS  Google Scholar 

  • Bartram J, Carr R (2004) An introduction to emerging waterborne zoonoses and general control principles. In: Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VPJ (eds) Waterborne zoonoses: identification, causes, and control. IWA Publishing, London, p 17

    Google Scholar 

  • Benenson MW, Takafuji ET, Lemon SM, Greenup RL, Sulzer AJ (1982) Oocyst-transmitted toxoplasmosis associated with ingestion of contaminated water. N Engl J Med 307(11):666–669

    Article  CAS  Google Scholar 

  • Berlin OG, Novak SM, Porschen RK, Long EG, Stelma GN, Schaeffer FW (1994) Recovery of Cyclospora organisms from patients with prolonged diarrhea. Clin Infect Dis 18(4):606–609

    Article  CAS  Google Scholar 

  • Berlin OG, Peter JB, Gagne C, Conteas CN, Ash LR (1998) Autofluorescence and the detection of Cyclospora oocysts. Emerg Infect Dis 4(1):127–128

    Article  CAS  Google Scholar 

  • Bóia MN, Carvalho-Costa FA, Sodré FC, Pinto GMT, Amendoeira MRR (2008) Seroprevalence of Toxoplasma gondii infection among indian people living in Iauareté, São Gabriel da Cachoeira, Amazonas, Brazil. Rev Inst Med Trop Sao Paulo 50(1):17–20

    Article  Google Scholar 

  • Boothroyd JC, Grigg ME (2002) Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? Curr Opin Microbiol 5(4):438–442

    Article  Google Scholar 

  • Borchardt MA, Spencer SK, Bertz PD, Ware MW, Dubey JP, Alan Lindquist HD (2009) Concentrating Toxoplasma gondii and Cyclospora cayetanensis from surface water and drinking water by continuous separation channel centrifugation. J Appl Microbiol 107(4):1089–1097

    Article  CAS  Google Scholar 

  • Bossi P, Bricaire F (2004) Severe acute disseminated toxoplasmosis. Lancet 364(9434):579

    Article  Google Scholar 

  • Bossi P, Caumes E, Paris L, Dardé ML, Bricaire F (1998) Toxoplasma gondii-associated Guillain-Barré syndrome in an immunocompetent patient. J Clin Microbiol 36(12):3724–3725

    CAS  Google Scholar 

  • Bossi P, Paris L, Caumes E, Katlama C, Danis M, Bricaire F (2002) Severe acute disseminated toxoplasmosis acquired by an immunocompetent patient in French Guiana. Scand J Infect Dis 34(4):311–314

    Article  Google Scholar 

  • Bowie WR, King AS, Werker DH, Isaac-Renton JL, Bell A, Eng SB, Marion SA (1997) Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma Investigation Team. Lancet 350(9072):173–177

    Article  CAS  Google Scholar 

  • Braid MD, Daniels LM, Kitts CL (2003) Removal of PCR inhibitors from soil DNA by chemical flocculation. J Microbiol Methods 52(3):389–393

    Article  CAS  Google Scholar 

  • Bukhari Z, McCuin RM, Fricker CR, Clancy JL (1998) Immunomagnetic separation of Cryptosporidium parvum from source water samples of various turbidities. Appl Environ Microbiol 64(11):4495–4499

    CAS  Google Scholar 

  • Burg JL, Grover CM, Pouletty P, Boothroyd JC (1989) Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol 27(8):1787–1792

    CAS  Google Scholar 

  • Burnett AJ, Shortt SG, Isaac-Renton J, King A, Werker D, Bowie WR (1998) Multiple cases of acquired toxoplasmosis retinitis presenting in an outbreak. Ophthalmology 105(6):1032–1037

    Article  CAS  Google Scholar 

  • Carme B, Aznar C, Motard A, Demar M, de Thoisy B (2002) Serologic survey of Toxoplasma gondii in noncarnivorous free-ranging neotropical mammals in French Guiana. Vector Borne Zoonotic Dis 2(1):11–17

    Article  CAS  Google Scholar 

  • Cassaing S, Bessières MH, Berry A, Berrebi A, Fabre R, Magnaval JF (2006) Comparison between two amplification sets for molecular diagnosis of toxoplasmosis by real-time PCR. J Clin Microbiol 44(3):720–724

    Article  CAS  Google Scholar 

  • Cavalcante GT, Aguilar DM, Camargo LMA, Labruna MB, de Andrade HF, Meireles LR, Dubey JP, Thulliez P, Dias RA, Gennari SM (2006) Seroprevalence of Toxoplasma gondii antibodies in humans from rural Western Amazon, Brazil. J Parasitol 92(3):647–649

    Article  CAS  Google Scholar 

  • Cazenave J, Forestier F, Bessieres MH, Broussin B, Begueret J (1992) Contribution of a new PCR assay to the prenatal diagnosis of congenital toxoplasmosis. Prenat Diagn 12(2):119–127

    Article  CAS  Google Scholar 

  • CDC (2010) Parasites—toxoplasmosis (Toxoplasma infection). http://www.cdc.gov/parasites/toxoplasmosis/.

  • Cliver DO, Fayer R (2004) Categories of waterborne disease organisms. In: Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VPJ (eds) Waterborne zoonoses: identification, causes, and control. IWA Publishing, London, pp 111–112

    Google Scholar 

  • Conrad PA, Miller MA, Kreuder C, James ER, Mazet J, Dabritz H, Jessup DA, Gulland F, Grigg ME (2005) Transmission of Toxoplasma: clues from the study of sea otters as sentinels of Toxoplasma gondii flow into the marine environment. Int J Parasitol 35(11–12):1155–1168

    Article  CAS  Google Scholar 

  • Cook AJ, Gilbert RE, Buffolano W, Zufferey J, Petersen E, Jenum PA, Foulon W, Semprini AE, Dunn DT (2000) Sources of Toxoplasma infection in pregnant women: European multicentre case–control study. European Research Network on Congenital Toxoplasmosis. BMJ 321(7254):142–147

    Article  CAS  Google Scholar 

  • Coutinho SG, Lobo R, Dutra G (1982) Isolation of Toxoplasma from the soil during an outbreak of toxoplasmosis in a rural area in Brazil. J Parasitol 68(5):866–868

    Article  CAS  Google Scholar 

  • Dardé ML, Villena I, Pinon JM, Beguinot I (1998) Severe toxoplasmosis caused by a Toxoplasma gondii strain with a new isoenzyme type acquired in French Guyana. J Clin Microbiol 36(1):324

    Google Scholar 

  • de Moura L, Bahia-Oliveira LMG, Wada MY, Jones JL, Tuboi SH, Carmo EH, Ramalho WM, Camargo NJ, Trevisan R, Graça RMT, da Silva AJ, Moura I, Dubey JP, Garrett DO (2006) Waterborne toxoplasmosis, Brazil, from field to gene. Emerg Infect Dis 12(2):326–329

    Article  Google Scholar 

  • Debord T, Eono P, Rey JL, Roué R (1996) Infectious hazards in military personnel in operations. Med Mal Infect 26(Suppl 3):402–407

    Article  Google Scholar 

  • DiGiorgio CL, Gonzalez DA, Huitt CC (2002) Cryptosporidium and Giardia recoveries in natural waters by using environmental protection agency method 1623. Appl Environ Microbiol 68(12):5952–5955

    Article  CAS  Google Scholar 

  • Dubey JP (2002) A review of toxoplasmosis in wild birds. Vet Parasitol 106(2):121–153

    Article  CAS  Google Scholar 

  • Dubey JP (2010) Toxoplasmosis of animals and humans, 2nd edn. CRC Press, Boca Raton, p 46

    Google Scholar 

  • Dubey JP, Frenkel JK (1973) Experimental Toxoplasma infection in mice with strains producing oocysts. J Parasitol 59(3):505–512

    Article  CAS  Google Scholar 

  • Dubey JP, Sreekumar C (2003) Redescription of Hammondia hammondi and its differentiation from Toxoplasma gondii. Int J Parasitol 33(13):1437–1453

    Article  CAS  Google Scholar 

  • Dubey JP, Weigel RM, Siegel AM, Thulliez P, Kitron UD, Mitchell MA, Mannelli A, Mateus-Pinilla NE, Shen SK, Kwok OC (1995) Sources and reservoirs of Toxoplasma gondii infection on 47 swine farms in Illinois. J Parasitol 81(5):723–729

    Article  CAS  Google Scholar 

  • Dubey JP, Lunney JK, Shen SK, Kwok OC, Ashford DA, Thulliez P (1996) Infectivity of low numbers of Toxoplasma gondii oocysts to pigs. J Parasitol 82(3):438–443

    Article  CAS  Google Scholar 

  • Dubey JP, Barr BC, Barta JR, Bjerkås I, Björkman C, Blagburn BL, Bowman DD, Buxton D, Ellis JT, Gottstein B, Hemphill A, Hill DE, Howe DK, Jenkins MC, Kobayashi Y, Koudela B, Marsh AE, Mattsson JG, McAllister MM, Modrý D, Omata Y, Sibley LD, Speer CA, Trees AJ, Uggla A, Upton SJ, Williams DJL, Lindsay DS (2002) Redescription of Neospora caninum and its differentiation from related coccidia. Int J Parasitol 32(8):929–946

    Article  CAS  Google Scholar 

  • Dumètre A, Dardé ML (2003) How to detect Toxoplasma gondii oocysts in environmental samples? FEMS Microbiol Rev 27(5):651–661

    Article  CAS  Google Scholar 

  • Dumètre A, Dardé ML (2004) Purification of Toxoplasma gondii oocysts by cesium chloride gradient. J Microbiol Methods 56(3):427–430

    Article  CAS  Google Scholar 

  • Dumètre A, Dardé ML (2005) Immunomagnetic separation of Toxoplasma gondii oocysts using a monoclonal antibody directed against the oocyst wall. J Microbiol Methods 61(2):209–217

    Article  CAS  Google Scholar 

  • Dumètre A, Dardé ML (2007) Detection of Toxoplasma gondii in water by an immunomagnetic separation method targeting the sporocysts. Parasitol Res 101(4):989–996

    Article  Google Scholar 

  • Dupouy-Camet J, de Souza SL, Maslo C, Paugam A, Saimot AG, Benarous R, Tourte-Schaefer C, Derouin F (1993) Detection of Toxoplasma gondii in venous blood from AIDS patients by polymerase chain reaction. J Clin Microbiol 31(7):1866–1869

    CAS  Google Scholar 

  • Eberhard ML, Pieniazek NJ, Arrowood MJ (1997) Laboratory diagnosis of Cyclospora infections. Arch Pathol Lab Med 121(8):792–797

    CAS  Google Scholar 

  • Erb RW, Wagner-Döbler I (1993) Detection of polychlorinated biphenyl degradation genes in polluted sediments by direct DNA extraction and polymerase chain reaction. Appl Environ Microbiol 59(12):4065–4073

    CAS  Google Scholar 

  • Ertug S, Okyay P, Turkmen M, Yuksel H (2005) Seroprevalence and risk factors for Toxoplasma infection among pregnant women in Aydin province, Turkey. BMC Publ Health 15(5):66

    Article  Google Scholar 

  • Fayer R (2004) Waterborne zoonotic protozoa. In: Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VPJ (eds) Waterborne zoonoses: identification, causes, and control. IWA Publishing, London, p 266

    Google Scholar 

  • Felício P, Villalobos EMC, Lara MCCSH, Cunha EMS, Carvalho PR, Chiebao DP, Gabriel FHL, Nassar AFC, Okuda LH, Nogueira AH, Marques EC, Genovez ME (2011) Infection by Toxoplasma gondii in herds of sheep-farming exclusive and intercropping with cattle and the environmental contamination by oocysts. Austr J Basic Appl Sci 5(5):1364–1374

    Google Scholar 

  • Filice GA, Hitt JA, Mitchell CD, Blackstad M, Sorensen SW (1993) Diagnosis of Toxoplasma parasitemia in patients with AIDS by gene detection after amplification with polymerase chain reaction. J Clin Microbiol 31(9):2327–2331

    CAS  Google Scholar 

  • Flegr J, Hrdý I (1994) Influence of chronic toxoplasmosis on some human personality factors. Folia Parasitol 41(2):122–126

    CAS  Google Scholar 

  • Flegr J, Zitková S, Kodym P, Frynta D (1996) Induction of changes in human behaviour by the parasitic protozoan Toxoplasma gondii. Parasitology 113(Pt 1):49–54

    Article  Google Scholar 

  • Flegr J, Kodym P, Tolarová V (2000) Correlation of duration of latent Toxoplasma gondii infection with personality changes in women. Biol Psychol 53(1):57–68

    Article  CAS  Google Scholar 

  • Flegr J, Havlícek J, Kodym P, Malý M, Smahel Z (2002) Increased risk of traffic accidents in subjects with latent toxoplasmosis: a retrospective case–control study. BMC Infect Dis 2:11

    Article  Google Scholar 

  • Flegr J, Preiss M, Klose J, Havlícek J, Vitáková M, Kodym P (2003) Decreased level of psychobiological factor novelty seeking and lower intelligence in men latently infected with the protozoan parasite Toxoplasma gondii dopamine, a missing link between schizophrenia and toxoplasmosis? Biol Psychol 63(3):253–268

    Article  Google Scholar 

  • Frenkel JK, Dubey JP (1975) Hammondia hammondi gen. nov., sp.nov., from domestic cats, a new coccidian related to Toxoplasma and Sarcocystis. Z Parasitenkd 46(1):3–12

    Article  CAS  Google Scholar 

  • Gomez-Marin J (2007) Toxoplasma gondii, Brazil. Emerg Infect Dis 13(3):512, Author reply, 512–513

    Article  Google Scholar 

  • Grover CM, Thulliez P, Remington JS, Boothroyd JC (1990) Rapid prenatal diagnosis of congenital Toxoplasma infection by using polymerase chain reaction and amniotic fluid. J Clin Microbiol 28(10):2297–2301

    CAS  Google Scholar 

  • Guay JM, Huot A, Gagnon S, Tremblay A, Levesque RC (1992) Physical and genetic mapping of cloned ribosomal DNA from Toxoplasma gondii: primary and secondary structure of the 5S gene. Gene 114(2):165–171

    Article  CAS  Google Scholar 

  • Guay JM, Dubois D, Morency MJ, Gagnon S, Mercier J, Levesque RC (1993) Detection of the pathogenic parasite Toxoplasma gondii by specific amplification of ribosomal sequences using comultiplex polymerase chain reaction. J Clin Microbiol 31(2):203–207

    CAS  Google Scholar 

  • Guy EC, Joynson DH (1995) Potential of the polymerase chain reaction in the diagnosis of active Toxoplasma infection by detection of parasite in blood. J Infect Dis 172(1):319–322

    Article  CAS  Google Scholar 

  • Hall SM, Pandit A, Golwilkar A, Williams TS (1999) How do Jains get Toxoplasma infection? Lancet 354(9177):486–487

    Article  CAS  Google Scholar 

  • Havelaar AH, Kemmeren JM, Kortbeek LM (2007) Disease burden of congenital toxoplasmosis. Clin Infect Dis 44(11):1467–1474

    Article  CAS  Google Scholar 

  • Havlícek J, Gasová ZG, Smith AP, Zvára K, Flegr J (2001) Decrease of psychomotor performance in subjects with latent ‘asymptomatic’ toxoplasmosis. Parasitology 122(Pt 5):515–520

    Google Scholar 

  • Heukelbach J, Meyer-Cirkel V, Moura RCS, Gomide M, Queiroz JAN, Saweljew P, Liesenfeld O (2007) Waterborne toxoplasmosis, northeastern Brazil. Emerg Infect Dis 13(2):287–289

    Article  Google Scholar 

  • Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54(3):703–711

    CAS  Google Scholar 

  • Homan WL, Vercammen M, de Braekeleer J, Verschueren H (2000) Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol 30(1):69–75

    Article  CAS  Google Scholar 

  • Hung C-C, Fan C-K, Su K-E, Sung F-C, Chiou H-Y, Gil V, da Conceicao dos Reis Ferreira M, de Carvalho JM, Cruz C, Lin Y-K, Tseng L-F, Sao K-Y, Chang W-C, Lan H-S, Chou S-H (2007) Serological screening and toxoplasmosis exposure factors among pregnant women in the Democratic Republic of Sao Tome and Principe. Trans R Soc Trop Med Hyg 101(2):134–139

    Article  Google Scholar 

  • Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67(10):4495–4503

    Article  CAS  Google Scholar 

  • Ikadai H, Tanaka H, Shibahara N, Matsuu A, Uechi M, Itoh N, Oshiro S, Kudo N, Igarashi I, Oyamada T (2004) Molecular evidence of infections with Babesia gibsoni parasites in Japan and evaluation of the diagnostic potential of a loop-mediated isothermal amplification method. J Clin Microbiol 42(6):2465–2469

    Article  CAS  Google Scholar 

  • Isaac-Renton J, Bowie WR, King A, Irwin GS, Ong CS, Fung CP, Shokeir MO, Dubey JP (1998) Detection of Toxoplasma gondii oocysts in drinking water. Appl Environ Microbiol 64(6):2278–2280

    CAS  Google Scholar 

  • Ishaku B, Ajogi I, Umoh JU, Lawal I, Randawa AJ (2009) Seroprevalence and risk factors for Toxoplasma gondii infection among antenatal women in Zaria, Nigeria. Res J Med Med Sci 4(2):483–488

    Google Scholar 

  • Jones JL, Dubey JP (2010) Waterborne toxoplasmosis–recent developments. Exp Parasitol 124(1):10–25

    Article  CAS  Google Scholar 

  • Jones JL, Holland GN (2010) Annual burden of ocular toxoplasmosis in the US. AmJTrop Med Hyg 82(3):464–465

    Article  Google Scholar 

  • Jones CD, Okhravi N, Adamson P, Tasker S, Lightman S (2000) Comparison of PCR detection methods for B1, P30, and 18S rDNA genes of T. gondii in aqueous humor. Invest Ophthalmol Vis Sci 41(3):634–644

    CAS  Google Scholar 

  • Kanarat S (2004) Symptoms, treatments, and health consequences of waterborne zoonotic diseases. In: Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VPJ (eds) Waterborne zoonoses: identification, causes, and control. IWA Publishing, London, pp 144–145

    Google Scholar 

  • Karanis P, Kimura A (2002) Evaluation of three flocculation methods for the purification of Cryptosporidium parvum oocysts from water samples. Lett Appl Microbiol 34(6):444–449

    Article  CAS  Google Scholar 

  • Karanis P, Kourenti C, Smith H (2007a) Waterborne transmission of protozoan parasites: a worldwide review of outbreaks and lessons learnt. J Wat Health 5(1):1–38

    Article  Google Scholar 

  • Karanis P, Thekisoe O, Kiouptsi K, Ongerth J, Igarashi I, Inoue N (2007b) Development and preliminary evaluation of a loop-mediated isothermal amplification procedure for sensitive detection of Cryptosporidium oocysts in fecal and water samples. Appl Environ Microbiol 73(17):5660–5662

    Article  CAS  Google Scholar 

  • Kaucner C, Stinear T (1998) Sensitive and rapid detection of viable Giardia cysts and Cryptosporidium parvum oocysts in large-volume water samples with wound fiberglass cartridge filters and reverse transcription-PCR. Appl Environ Microbiol 64(11):4627

    CAS  Google Scholar 

  • Keenihan SH, Schetters T, Taverne J (2002) In brief. Trends Parasitol 18(5):203–204

    Article  Google Scholar 

  • Kemmeren JM, Mangen M-JJ, van Duynhoven YTHP, Havelaar AH (2006) Priority setting of foodborne pathogens. Disease burden and costs of selected enteric pathogen; Report nr. 330080001; National Institute for Public Health and the Environment: Bilthoven, http://www.rivm.nl/bibliotheek/rapporten/330080001.pdf

  • Kortbeek LM, Hofhuis A, Nijhuis CDM, Havelaar AH (2009) Congenital toxoplasmosis and DALYs in the Netherlands. Mem Inst Oswaldo Cruz 104(2):370–373

    Article  CAS  Google Scholar 

  • Kourenti C, Karanis P (2004) Development of a sensitive polymerase chain reaction method for the detection of Toxoplasma gondii in water. Wat Sci Technol 50(1):287–291

    CAS  Google Scholar 

  • Kourenti C, Karanis P (2006) Evaluation and applicability of a purification method coupled with nested PCR for the detection of Toxoplasma oocysts in water. Lett Appl Microbiol 43(5):475–481

    Article  CAS  Google Scholar 

  • Kourenti C, Heckeroth A, Tenter A, Karanis P (2003) Development and application of different methods for the detection of Toxoplasma gondii in water. Appl Environ Microbiol 69(1):102–106

    Article  CAS  Google Scholar 

  • Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62(3):1102–1106

    CAS  Google Scholar 

  • Kuboki N, Inoue N, Sakurai T, Di Cello F, Grab DJ, Suzuki H, Sugimoto C, Igarashi I (2003) Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol 41(12):5517–5524

    Article  CAS  Google Scholar 

  • Kuhn RC, Oshima KH (2002) Hollow-fiber ultrafiltration of Cryptosporidium parvum oocysts from a wide variety of 10-L surface water samples. Can J Microbiol 48(6):542–549

    Article  CAS  Google Scholar 

  • Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson P (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microbiol 64(7):2463–2472

    CAS  Google Scholar 

  • Lass A, Pietkiewicz H, Modzelewska E, Dumètre A, Szostakowska B, Myjak P (2009) Detection of Toxoplasma gondii oocysts in environmental soil samples using molecular methods. Eur J Clin Microbiol Infect Dis 28(6):599–605

    Article  CAS  Google Scholar 

  • Lau YL, Meganathan P, Sonaimuthu P, Thiruvengadam G, Nissapatorn V, Chen Y (2010) Specific, sensitive, and rapid diagnosis of active toxoplasmosis by a loop-mediated isothermal amplification method using blood samples from patients. J Clin Microbiol 48(10):3698–3702

    Article  CAS  Google Scholar 

  • Lebech M, Lebech AM, Nelsing S, Vuust J, Mathiesen L, Petersen E (1992) Detection of Toxoplasma gondii DNA by polymerase chain reaction in cerebrospinal fluid from AIDS patients with cerebral toxoplasmosis. J Infect Dis 165(5):982–983

    Article  CAS  Google Scholar 

  • LeChevallier MW, Norton WD, Siegel JE, Abbaszadegan M (1995) Evaluation of the immunofluorescence procedure for detection of Giardia cysts and Cryptosporidium oocysts in water. Appl Environ Microbiol 61(2):690–697

    CAS  Google Scholar 

  • Lee MB (2000) Everyday and exotic foodborne parasites. Can J Infect Dis 11(3):155–158

    CAS  Google Scholar 

  • Lee PY, Mangan J, Holliman RE, Butcher PD (1999) Quantitation of Toxoplasma gondii DNA in a competitive nested polymerase chain reaction. J Clin Pathol 52(1):61–64

    Article  CAS  Google Scholar 

  • Leff LG, Dana JR, McArthur JV, Shimkets LJ (1995) Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol 61(3):1141–1143

    CAS  Google Scholar 

  • Lin YL, Liao YS, Liao LR, Chen FN, Kuo HM, He S (2008) Seroprevalence and sources of Toxoplasma infection among indigenous and immigrant pregnant women in Taiwan. Parasitol Res 103(1):67–74

    Article  Google Scholar 

  • Lindquist HDA, Bennett JW, Hester JD, Ware MW, Dubey JP, Everson WV (2003) Autofluorescence of Toxoplasma gondii and related coccidian oocysts. J Parasitol 89(4):865–867

    Article  Google Scholar 

  • Lindsay DS, Upton SJ, Dubey JP (1999) A structural study of the Neospora caninum oocyst. Int J Parasitol 29(10):1521–1523

    Article  CAS  Google Scholar 

  • Literák I, Rychlík I (1999) Genome changes in the Toxoplasma gondii strains during laboratory passages in mice. Acta Vet Brno 68(3):203–208

    Article  Google Scholar 

  • Loomis WD (1974) Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Meth Enzymol 31(Pt A):528–544

    Article  CAS  Google Scholar 

  • Lopez A, Dietz VJ, Wilson M, Navin TR, Jones JL (2000) Preventing congenital toxoplasmosis. MMWR Recomm Rep 49(RR-2):59–68

    CAS  Google Scholar 

  • López-Castillo CA, Díaz-Ramirez J, Gómez-Marín JE (2005) Risk facrors for Toxolasma gondii infection in pregnant women in Armenia, Colombia. Rev Salud Publica 7(2):180–190

    Article  Google Scholar 

  • MacPherson JM, Gajadhar AA (1993) Sensitive and specific polymerase chain reaction detection of Toxoplasma gondii for veterinary and medical diagnosis. Can J Vet Res 57(1):45–48

    CAS  Google Scholar 

  • Malik M, Kain J, Pettigrew C, Ogram A (1994) Purification and molecular analysis of microbial DNA from compost. J Microbiol Methods 20(3):183–196

    Article  CAS  Google Scholar 

  • Mehlhorn H, Aspöck H (2008) Encyclopedia of parasitology, 3rd edn. Springer, Berlin, pp 1424–1427

    Book  Google Scholar 

  • Mesquita RT, Vidal JE, Pereira-Chioccola VL (2010a) Molecular diagnosis of cerebral toxoplasmosis: comparing markers that determine Toxoplasma gondii by PCR in peripheral blood from HIV-infected patients. Braz J Infect Dis 14(4):346–350

    CAS  Google Scholar 

  • Mesquita RT, Ziegler AP, Hiramoto RM, Vidal JE, Pereira-Chioccola VL (2010b) Real-time quantitative PCR in cerebral toxoplasmosis diagnosis of Brazilian human immunodeficiency virus-infected patients. J Med Microbiol 59(Pt 6):641–647

    Article  CAS  Google Scholar 

  • Monis PT, Saint CP (2001) Development of a nested-PCR assay for the detection of Cryptosporidium parvum in finished water. Wat Res 35(7):1641–1648

    Article  CAS  Google Scholar 

  • Montoya JG, Parmley S, Liesenfeld O, Jaffe GJ, Remington JS (1999) Use of the polymerase chain reaction for diagnosis of ocular toxoplasmosis. Ophthalmology 106(8):1554–1563

    Article  CAS  Google Scholar 

  • Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60(5):1572–1580

    Google Scholar 

  • Nieminski EC, Schaefer FW, Ongerth JE (1995) Comparison of two methods for detection of Giardia cysts and Cryptosporidium oocysts in water. Appl Environ Microbiol 61(5):1714–1719

    CAS  Google Scholar 

  • Nissapatorn V (2009) Toxoplasmosis in HIV/AIDS: a living legacy. SE Asian J Trop Med Public Health 40(6):1158–1178

    Google Scholar 

  • Njiru ZK, Mikosza ASJ, Matovu E, Enyaru JCK, Ouma JO, Kibona SN, Thompson RCA, Ndung'u JM (2008a) African trypanosomiasis: sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Int J Parasitol 38(5):589–599

    Article  CAS  Google Scholar 

  • Njiru ZK, Mikosza ASJ, Armstrong T, Enyaru JC, Ndung'u JM, Thompson ARC (2008b) Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS Negl Trop Dis 2(1):e147

    Article  CAS  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

    Article  CAS  Google Scholar 

  • BIOHAZ Panel, AHAW Panel (2006) Opinion of the Scientific Panel on Biological Hazards (BIOHAZ) and of the Scientific Panel on Animal Health and Welfare (AHAW) on “Review of the Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Antimicrobial Resistance in the European Union in 2004”. EFSA J 403:1–62

    Google Scholar 

  • Ortega Y (2010) Foodborne parasites. Springer, New York, pp 109–113

    Google Scholar 

  • Palanisamy M, Madhavan B, Balasundaram MB, Andavar R, Venkatapathy N (2006) Outbreak of ocular toxoplasmosis in Coimbatore, India. Indian J Ophthalmol 54(2):129–131

    Article  Google Scholar 

  • Parmley SF, Goebel FD, Remington JS (1992) Detection of Toxoplasma gondii in cerebrospinal fluid from AIDS patients by polymerase chain reaction. J Clin Microbiol 30(11):3000–3002

    CAS  Google Scholar 

  • Paul M (1998) Potential risk factors for Toxoplasma gondii infection in cases with recently acquired toxoplasmosis. Przegl Epidemiol 52(4):447–454

    CAS  Google Scholar 

  • Pelloux H, Weiss J, Simon J, Muet F, Fricker-Hidalgo H, Goullier-Fleuret A, Ambroise-Thomas P (1996) A new set of primers for the detection of Toxoplasma gondii in amniotic fluid using polymerase chain reaction. FEMS Microbiol Lett 138(1):11–15

    Article  CAS  Google Scholar 

  • Pereira KS, Franco RMB, Leal DAG (2010) Transmission of toxoplasmosis (Toxoplasma gondii) by foods. Adv Food Nutr Res 60:1–19

    Article  Google Scholar 

  • Porteous LA, Armstrong JL (1991) Recovery of bulk DNA from soil by a rapid small-scale extraction method. Curr Microbiol 22(6):345–348

    Article  CAS  Google Scholar 

  • Powell HA, Gooding CM, Garrett SD, Lund BM, Mckee RA (1994) Proteinase inhibition of the detection of Listeria monocytogenes in milk using the polymerase chain reaction. Lett Appl Microbiol 18(1):59–61

    Article  CAS  Google Scholar 

  • Pujol-Riqué M, Derouin F, García-Quintanilla A, Valls ME, Miró JM, de Jiménez Anta MT (1999) Design of a one-tube hemi-nested PCR for detection of Toxoplasma gondii and comparison of three DNA purification methods. J Med Microbiol 48(9):857–862

    Article  Google Scholar 

  • Quintero-Betancourt W, Peele ER, Rose JB (2002) Cryptosporidium parvum and Cyclospora cayetanensis: a review of laboratory methods for detection of these waterborne parasites. J Microbiol Methods 49(3):209–224

    Article  Google Scholar 

  • Rochelle PA, de Leon R, Stewart MH, Wolfe RL (1997) Comparison of primers and optimization of PCR conditions for detection of Cryptosporidium parvum and Giardia lamblia in water. Appl Environ Microbiol 63(1):106–114

    CAS  Google Scholar 

  • Schares G, Herrmann DC, Beckert A, Schares S, Hosseininejad M, Pantchev N, Globokar Vrhovec M, Conraths FJ (2008) Characterization of a repetitive DNA fragment in Hammondia hammondi and its utility for the specific differentiation of H. hammondi from Toxoplasma gondii by PCR. Mol Cell Probes 22(4):244–251

    Article  CAS  Google Scholar 

  • Schwab KJ, McDevitt JJ (2003) Development of a PCR-enzyme immunoassay oligoprobe detection method for Toxoplasma gondii oocysts, incorporating PCR controls. Appl Environ Microbiol 69(10):5819–5825

    Article  CAS  Google Scholar 

  • Schwab KJ, Estes MK, Neill FH, Atmar RL (1997) Use of heat release and an internal RNA standard control in reverse transcription-PCR detection of Norwalk virus from stool samples. J Clin Microbiol 35(2):511–514

    CAS  Google Scholar 

  • Shapiro K, Conrad PA, Mazet JAK, Wallender WW, Miller WA, Largier JL (2010a) Effect of estuarine wetland degradation on transport of Toxoplasma gondii surrogates from land to sea. Appl Environ Microbiol 76(20):6821–6828

    Article  CAS  Google Scholar 

  • Shapiro K, Mazet JAK, Schriewer A, Wuertz S, Fritz H, Miller WA, Largier J, Conrad PA (2010b) Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Wat Res 44(3):893–903

    Article  CAS  Google Scholar 

  • Shepherd KM, Wyn-Jones AP (1996) An evaluation of methods for the simultaneous detection of Cryptosporidium oocysts and Giardia cysts from water. Appl Environ Microbiol 62(4):1317–1322

    CAS  Google Scholar 

  • Simmons OD, Sobsey MD, Heaney CD, Schaefer FW, Francy DS (2001) Concentration and detection of Cryptosporidium oocysts in surface water samples by method 1622 using ultrafiltration and capsule filtration. Appl Environ Microbiol 67(3):1123–1127

    Article  Google Scholar 

  • Sluter SD, Tzipori S, Widmer G (1997) Parameters affecting polymerase chain reaction detection of waterborne Cryptosporidium parvum oocysts. Appl Microbiol Biotechnol 48(3):325–330

    Article  CAS  Google Scholar 

  • Sotiriadou I, Karanis P (2008) Evaluation of loop-mediated isothermal amplification for detection of Toxoplasma gondii in water samples and comparative findings by polymerase chain reaction and immunofluorescence test (IFT). Diagn Microbiol Infect Dis 62(4):357–365

    Article  CAS  Google Scholar 

  • Spoladore LG (2008) Human toxoplasmosis. Clinical data and microbiology. Argonio, Rio de Janeiro, p 2

    Google Scholar 

  • Sroka J, Wójcik-Fatla A, Dutkiewicz J (2006) Occurrence of Toxoplasma gondii in water from wells located on farms. Ann Agric Environ Med 13(1):169–175

    Google Scholar 

  • Sroka J, Wojcik-Fatla A, Szymanska J, Dutkiewicz J, Zajac V, Zwolinski J (2010a) The occurrence of Toxoplasma gondii infection in people and animals from rural environment of Lublin region—estimate of potential role of water as a source of infection. Ann Agric Environ Med 17(1):125–132

    Google Scholar 

  • Sroka S, Bartelheimer N, Winter A, Heukelbach J, Ariza L, Ribeiro H, Oliveira FA, Queiroz AJN, Alencar C, Liesenfeld O (2010b) Prevalence and risk factors of toxoplasmosis among pregnant women in Fortaleza, Northeastern Brazil. AmJTrop Med Hyg 83(3):528–533

    Article  Google Scholar 

  • Stinear T, Matusan A, Hines K, Sandery M (1996) Detection of a single viable Cryptosporidium parvum oocyst in environmental water concentrates by reverse transcription-PCR. Appl Environ Microbiol 62(9):3385–3390

    CAS  Google Scholar 

  • Suzuki Y, Yang Q, Remington JS (1995) Genetic resistance against acute toxoplasmosis depends on the strain of Toxoplasma gondii. J Parasitol 81(6):1032–1034

    Article  CAS  Google Scholar 

  • Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59(8):2657–2665

    CAS  Google Scholar 

  • Tenter AM (2009) Toxoplasma gondii in animals used for human consumption. Mem Inst Oswaldo Cruz 104(2):364–369

    Article  Google Scholar 

  • Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30(12–13):1217–1258

    Article  CAS  Google Scholar 

  • Thekisoe OMM, Inoue N, Kuboki N, Tuntasuvan D, Bunnoy W, Borisutsuwan S, Igarashi I, Sugimoto C (2005) Evaluation of loop-mediated isothermal amplification (LAMP), PCR and parasitological tests for detection of Trypanosoma evansi in experimentally infected pigs. Vet Parasitol 130(3–4):327–330

    Article  CAS  Google Scholar 

  • Thekisoe OMM, Kuboki N, Nambota A, Fujisaki K, Sugimoto C, Igarashi I, Yasuda J, Inoue N (2007) Species-specific loop-mediated isothermal amplification (LAMP) for diagnosis of trypanosomosis. Acta Trop 102(3):182–189

    Article  CAS  Google Scholar 

  • Tomita N, Mori Y, Kanda H, Notomi T (2008) Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3(5):877–882

    Article  CAS  Google Scholar 

  • Torrey EF, Yolken RH (2003) Toxoplasma gondii and schizophrenia. Emerg Infect Dis 9(11):1375–1380

    Article  Google Scholar 

  • Torsvik VL (1980) Isolation of bacterial DNA from soil. Soil Biol Biochem 12(1):15–21

    Article  CAS  Google Scholar 

  • Tsai YL, Olson BH (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol 58(7):2292–2295

    CAS  Google Scholar 

  • Vaudaux JD, Muccioli C, James ER, Silveira C, Magargal SL, Jung C, Dubey JP, Jones JL, Doymaz MZ, Bruckner DA, Belfort R, Holland GN, Grigg ME (2010) Identification of an atypical strain of Toxoplasma gondii as the cause of a waterborne outbreak of toxoplasmosis in Santa Isabel do Ivai, Brazil. J Infect Dis 202(8):1226–1233

    Article  CAS  Google Scholar 

  • Villena I, Aubert D, Gomis P, Ferté H, Inglard J-C, Denis-Bisiaux H, Dondon J-M, Pisano E, Ortis N, Pinon J-M (2004) Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Appl Environ Microbiol 70(7):4035–4039

    Article  CAS  Google Scholar 

  • Wallace GD, Frenkel JK (1975) Besnoitia species (Protozoa, Sporozoa, Toxoplasmatidae): recognition of cyclic transmission by cats. Science 188(4186):369–371

    Article  CAS  Google Scholar 

  • Wastling JM, Nicoll S, Buxton D (1993) Comparison of two gene amplification methods for the detection of Toxoplasma gondii in experimentally infected sheep. J Med Microbiol 38(5):360–365

    Article  CAS  Google Scholar 

  • Watson RJ, Blackwell B (2000) Purification and characterization of a common soil component which inhibits the polymerase chain reaction. Can J Microbiol 46(7):633–642

    Article  CAS  Google Scholar 

  • Webster JP (2001) Rats, cats, people and parasites: the impact of latent toxoplasmosis on behaviour. Microbes Infect 3(12):1037–1045

    Article  CAS  Google Scholar 

  • Weinbach EC, Garbus J (1966a) Restoration by albumin of oxidative phosphorylation and related reactions. J Biol Chem 241(1):169–175

    CAS  Google Scholar 

  • Weinbach EC, Garbus J (1966b) The rapid restoration of respiratory control to uncoupled mitochondria. J Biol Chem 241(16):3708–3713

    CAS  Google Scholar 

  • WHO (2003) Emerging issues in water and infectious disease. World Health Organization, France

    Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, Printed in Malta by Gutenberg

    Google Scholar 

  • Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63(10):3741–3751

    CAS  Google Scholar 

  • Yang W, Lindquist HDA, Cama V, Schaefer FW, Villegas E, Fayer R, Lewis EJ, Feng Y, Xiao L (2009) Detection of Toxoplasma gondii oocysts in water sample concentrates by real-time PCR. Appl Environ Microbiol 75(11):3477–3483

    Article  CAS  Google Scholar 

  • Yolken RH, Dickerson FB, Fuller Torrey E (2009) Toxoplasma and schizophrenia. Parasite Immunol 31(11):706–715

    Article  CAS  Google Scholar 

  • Zarlenga DS, Trout JM (2004) Concentrating, purifying and detecting waterborne parasites. Vet Parasitol 126(1–2):195–217

    Article  Google Scholar 

  • Zhang H, Thekisoe OMM, Aboge GO, Kyan H, Yamagishi J, Inoue N, Nishikawa Y, Zakimi S, Xuan X (2009) Toxoplasma gondii: sensitive and rapid detection of infection by loop-mediated isothermal amplification (LAMP) method. Exp Parasitol 122(1):47–50

    Article  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for Mr. Jonathan O'Malley for editing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Karanis.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karanis, P., Aldeyarbi, H.M., Mirhashemi, M.E. et al. The impact of the waterborne transmission of Toxoplasma gondii and analysis efforts for water detection: an overview and update. Environ Sci Pollut Res 20, 86–99 (2013). https://doi.org/10.1007/s11356-012-1177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1177-5

Keywords

Navigation