Skip to main content

Advertisement

Log in

Biochemical properties and vaccine effect of recombinant TPx-3 from Schistosoma japonicum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Thioredoxin peroxidases (TPxs) play an important role in maintaining redox homeostasis and in protecting organisms from the accumulation of toxic reactive oxygen species (ROS). In this study, we isolated the thioredoxin peroxidase-3 gene of Schistosoma japonicum, SjTPx-3. The open reading frame (ORF) of SjTPx-3 was 663 bp encoding 220 amino acids with a molecular weight of 24.99 kDa and an isoelectric point of 6.20. Quantitative real-time reverse transcription-polymerase chain reaction indicated that SjTPx-3 was expressed in all different stages of the parasites, with highest expression in 35-day-old worms. The ORF of SjTPx-3 was subcloned into pET-32a (+) vectors and expressed in Escherichia coli. Recombinant SjTPx-3 (rSjTPx-3) was expressed as a soluble protein with good antigenicity, as demonstrated by western blotting. Immunohistochemical analysis revealed that SjTPx-3 was mainly localized on the tegument of the parasites. Mice vaccinated with rSjTPx-3 had a 37.02% (P < 0.05) reduction in worm burden and 56.52% (P < 0.05) reduction in liver egg production compared with control, unvaccinated mice. Enzyme-linked immunosorbent assay analysis demonstrated that rSjTPx-3 could induce high levels of anti-rSjTPx-3-specific IgG, IgG1, and IgG2a antibodies. Characteristic Th1 and Th2 immune response cytokines were detected by flow cytometry and were increased by rSjTPx-3. Taken together, these results suggest that SjTPx-3 is an antioxidant enzyme responsible for protecting S. japonicum from oxidative stress. rSjTPx-3 may represent a potential vaccine candidate and/or new drug target for patients with schistosomiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbas AK, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383(6603):787–793

    Article  CAS  PubMed  Google Scholar 

  • Bazzone LE, Smith PM, Rutitzky LI, Shainheit MG, Urban JF, Setiawan T, Bium AM, Weinstock JV, Stadecker MJ (2008) Coinfection with the intestinal nematode Heligmosomoides polygyrus markedly reduces hepatic egg-induced immunopathology and proinflammatory cytokines in mouse models of severe schistosomiasis. Infect Immun 76(11):5164–5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergquist NR (2002) Schistosomiasis: from risk assessment to control. Trends Parasitol 18(7):309–314

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Butterworth AE (1984) Cell-mediated damage to helminths. Adv Parasitol 23:143–235

    Article  CAS  PubMed  Google Scholar 

  • Callahan HL, Crouch RK, James ER (1988) Helminth anti-oxidant enzymes: a protective mechanism against host oxidants? Parasitol Today 4(8):218–225

    Article  CAS  PubMed  Google Scholar 

  • Capron M, Capron A (1986) Rats, mice and men—models for immune effector mechanisms against schistosomiasis. Parasitol Today 2(3):69–75

    Article  CAS  PubMed  Google Scholar 

  • Cardoso FC, Macedo GC, Gava E, Kitten GT, Mati VL, de Melo AL, Caliari MV, Almeida GT, Venancio TM, Verjovski-Almeida S, Oliveira SC (2008) Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Negl Trop Dis 2(10):e308

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox AG, Winterbourn CC, Hampton MB (2010) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425(2):313–325

    Article  CAS  Google Scholar 

  • Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38(10):713–721

    Article  CAS  PubMed  Google Scholar 

  • Ghosh I, Eisinger SW, Raghavan N, Scott AL (1998) Thioredoxin peroxidases from Brugia malayi. Mol Biochem Parasitol 91(2):207–220

    Article  CAS  PubMed  Google Scholar 

  • Hackett F (1993) The culture of Schistosoma mansoni and production of life cycle stages. Methods Mol Biol 21:89–99

    CAS  PubMed  Google Scholar 

  • Hofmann B, Hecht HJ, Flohe L (2002) Peroxiredoxins. Biol Chem 383(3–4):347–364

    CAS  PubMed  Google Scholar 

  • Hong Y, Han Y, Fu Z, Han H, Qiu C, Zhang M, Yang J, Shi Y, Li X, Lin J (2013) Characterization and expression of the Schistosoma japonicum thioredoxin peroxidase-2 gene. J Parasitol 99(1):68–76

    Article  CAS  PubMed  Google Scholar 

  • Katae M, Miyahira Y, Takeda K, Matsuda H, Yagita H, Okumura K, Takeuchi T, Kamiyama T, Ohwada A, Fukuchi Y, Aoki T (2002) Coadministration of an interleukin-12 gene and a Trypanosoma cruzi gene improves vaccine efficacy. Infect Immun 70(9):4833–4840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazura JW, Fanning MM, Blumer JL, Mahmoud AA (1981) Role of cell-generated hydrogen peroxide in granulocyte-mediated killing of schistosomula of Schistosoma mansoni in vitro. J Clin Invest 67(1):93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimowski L, Chandrashekar R, Tripp CA (1997) Molecular cloning, expression and enzymatic activity of a thioredoxin peroxidase from Dirofilaria immitis. Mol Biochem Parasitol 90(1):297–306

    Article  CAS  PubMed  Google Scholar 

  • Kumagai T, Osada Y, Kanazawa T (2006) 2-Cys peroxiredoxins from Schistosoma japonicum: the expression profile and localization in the life cycle. Mol Biochem Parasitol 149(2):135–143

    Article  CAS  PubMed  Google Scholar 

  • Kwatia MA, Botkin DJ, Williams DL (2000) Molecular and enzymatic characterization of Schistosoma mansoni thioredoxin peroxidase. J Parasitol 86(5):908–915

    Article  CAS  PubMed  Google Scholar 

  • Layland LE, Wagner H, da Costa CU (2005) Lack of antigen-specific Th1 response alters granuloma formation and composition in Schistosoma mansoni-infected MyD88−/− mice. Eur J Immunol 35(11):3248–3257

    Article  CAS  PubMed  Google Scholar 

  • Letscher-Bru V, Villard O, Risse B, Zauke M, Klein JP, Kien TT (1998) Protective effect of vaccination with a combination of recombinant surface antigen 1 and interleukin-12 against toxoplasmosis in mice. Infect Immun 66(9):4503–4506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim YS, Cha MK, Kim HK, Uhm TB, Park JW, Kim K, Kim IH (1993) Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo. Biochem Biophys Res Commun 192(1):273–280

    Article  CAS  PubMed  Google Scholar 

  • Loukas A, Tran M, Pearson MS (2007) Schistosome membrane proteins as vaccines. Int J Parasitol 37(3–4):257–263

    Article  CAS  PubMed  Google Scholar 

  • Loverde PT (1998) Do antioxidants play a role in schistosome host-parasite interactions? Parasitol Today 14(7):284–289

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Egerton GL, Bianco AE, Williams SA (1998) Thioredoxin peroxidase from Onchocerca volvulus: a major hydrogen peroxide detoxifying enzyme in filarial parasites. Mol Biochem Parasitol 91(2):221–235

    Article  CAS  PubMed  Google Scholar 

  • Lucy B (2004) HIV: getting to the bottom of CD4 T cell loss. Nat Rev Microbiol 2:853

    Article  Google Scholar 

  • Mei H, Thakur A, Schwartz J, Lo Verde PT (1996) Expression and characterization of glutathione peroxidase activity in the human blood fluke Schistosoma mansoni. Infect Immun 64(10):4299–4306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Netto LE, Stadtman ER (1996) The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions. Arch Biochem Biophys 333(1):233–242

    Article  CAS  PubMed  Google Scholar 

  • Netto LES, Chae HZ, Kang SW, Rhee SG, Stadtman ER (1996) Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem 271(26):15315–15321

    Article  CAS  Google Scholar 

  • Pacifico LG, Fonseca CT, Chiari L, Oliveira SC (2006) Immunization with Schistosoma mansoni 22.6 kDa antigen induces partial protection against experimental infection in a recombinant protein form but not as DNA vaccine. Immunobiology 211(1–2):97–104

    Article  CAS  PubMed  Google Scholar 

  • Robinson MW, Hutchinson AT, Dalton JP, Donnelly S (2010) Peroxiredoxin: a central player in immune modulation. Parasite Immunol 32(5):305–313

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Free Radic Biol Med 28(2):289–309

    Article  CAS  PubMed  Google Scholar 

  • Sauri H, Butterfield L, Kim A, Shau H (1995) Antioxidant function of recombinant human natural killer enhancing factor. Biochem Biophys Res Commun 208(3):964–969

    Article  CAS  PubMed  Google Scholar 

  • Sayed AA, Williams DL (2004) Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni. J Biol Chem 279(25):26159–26166

    Article  CAS  PubMed  Google Scholar 

  • Sayed AA, Cook SK, Williams DL (2006) Redox balance mechanisms in Schistosoma mansoni rely on peroxiredoxins and albumin and implicate peroxiredoxins as novel drug targets. J Biol Chem 281(25):17001–17010

    Article  CAS  PubMed  Google Scholar 

  • Simurda MC, van Keulen H, Rekosh DM, LoVerde PT (1988) Schistosoma mansoni: identification and analysis of an mRNA and a gene encoding superoxide dismutase (Cu/Zn). Exp Parasitol 67(1):73–84

    Article  CAS  PubMed  Google Scholar 

  • Suttiprapa S, Loukas A, Laha T, Wongkham S, Kaewkes S, Gaze S, Brindley PJ, Sripa B (2008) Characterization of the antioxidant enzyme, thioredoxin peroxidase, from the carcinogenic human liver fluke, Opisthorchis viverrini. Mol Biochem Parasitol 160(2):116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran MH, Pearson MS, Bethony JM, Smyth DJ, Jones MK, Duke M, Don TA, McManus DP, Correa-Oliveira R, Loukas A (2006) Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat Med 12(7):835–840

    Article  CAS  PubMed  Google Scholar 

  • Usawattanakul W, Kamijo T, Kojima S (1982) Comparison of recovery of schistosomula of Schistosoma japonicum from lungs of mice and rats. J Parasitol 68(5):783–790

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Utzinger J, Zhou XN (2008) Schistosomiasis control: experiences and lessons from China. Lancet 372(9652):1793–1795

    Article  PubMed  Google Scholar 

  • Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40

    Article  CAS  PubMed  Google Scholar 

  • Yao P, Lu W, Meng F, Wang X, Xu B, Guo X (2013) Molecular cloning, expression and oxidative stress response of a mitochondrial thioredoxin peroxidase gene (AccTpx-3) from Apis cerana cerana. J Insect Physiol 59(3):273–282

    Article  CAS  PubMed  Google Scholar 

  • Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74(1):139–162

    CAS  PubMed  Google Scholar 

  • Zhang W, Rogniaux H, Huang W, Chauvin A, Moreau E (2011) Analysis of thioredoxin peroxidase as a promising antigen for diagnosis of Fasciola gigantica infection: a preliminary study. Parasitol Int 60(2):206–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Hong Y, Han Y, Han H, Peng J, Qiu C, Yang J, Lu K, Fu Z, Lin J (2013) Proteomic analysis of tegument-exposed proteins of female and male Schistosoma japonicum worms. J Proteome Res 12(11):5260–5270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yaojun Shi and Hao Li from Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, for technical assistance with parasite collection. This work was supported by the National Natural Science Foundation of China (Grant Nos. 31472188, 31172315, and 31402192), Key Projects in the National Science and Technology Pillar Program from the Ministry of Science and Technology (Grant No. 2015BAI09B04), and Fuzhiqiang subsidized by the program for leading personnel reserve of Minhang District, Shanghai (201442).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaojiao Lin or Zhiqiang Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhao, B., Zhang, M. et al. Biochemical properties and vaccine effect of recombinant TPx-3 from Schistosoma japonicum . Parasitol Res 116, 1361–1372 (2017). https://doi.org/10.1007/s00436-017-5415-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5415-0

Keywords

Navigation