Skip to main content

Advertisement

Log in

Mechanism by which the combination of SjCL3 and SjGAPDH protects against Schistosoma japonicum infection

  • Immunology and Host-Parasite Interactions - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

A vaccine is an important method to control schistosomiasis. Molecules related to lung-stage schistosomulum are considered potential vaccine candidates. We previously showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and cathepsin L3 (CL3) displayed differential expression in the lung-stage schistosomula of Schistosoma japonicum cocultured with host cells. In the present study, we prepared the two proteins and detected the protective effects of SjGAPDH by immunizing mice with this protein alone and in combination with SjCL3 with or without Freund’s adjuvant. Then, we investigated the possible mechanisms underlying S. japonicum infection. The results showed that vaccination of adjuvanted SjGAPDH decreased the worm burden (37.8%) and egg load (38.1%), and the combination of adjuvanted SjGAPDH and SjCL3 further decreased the worm burden (65.6%) and egg load (70.9%) during Schistosoma japonicum infection. However, the immunization of a combination of adjuvant-free SjGAPDH and SjCL3 displayed a lower protective effect (< 15%) than those of the adjuvanted SjCL3, the adjuvanted SjGAPDH, and a combination of adjuvanted SjGAPDH and SjCL3. Flow cytometric results showed that the frequency of regulatory T cells (Tregs) was lower (P < 0.05) in the group with adjuvanted SjGAPDH and SjCL3 (2.61%) than the remaining groups. The enzyme-linked immunosorbent assay (ELISA) results indicated that except for the uninfected and infected control groups, the remaining groups displayed a Th1-type shift in immune responses. These results showed the immunization of SjGAPDH resulted in partial protection (approximately 38%); inoculation with a combination of SjCL3 and SjGAPDH in Freund’s adjuvant resulted in a high immunoprotective effect (> 65%) against Schistosoma japonicum infection in mice, which was possibly caused by the reduced percentage of Tregs and a Th1-type shift in immune responses; and SjCL3 has no adjuvant-like effect, dissimilar to SmCL3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adalid-Peralta L, Fragoso G, Fleury A, Sciutto E (2011) Mechanisms underlying the induction of regulatory T cells and its relevance in the adaptive immune response in parasitic infections. Int J Biol Sci 7(9):1412–1426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anthony RM, Rutitzky LI, Urban JF Jr, Stadecker MJ, Gause WC (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7(12):975–987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Argiro LL, Kohlstadt SS, Henri SS, Dessein HH, Matabiau VV, Paris PP, Bourgois AA, Dessein AJ (2000) Identification of a candidate vaccine peptide on the 37 kDa Schistosoma mansoni GAPDH. Vaccine 18(19):2039–2048

    CAS  PubMed  Google Scholar 

  • Cardoso FC, Macedo GC, Gava E, Kitten GT, Mati VL, de Melo AL, Caliari MV, Almeida GT, Venancio TM, Verjovski-Almeida S, Oliveira SC (2008) Schistosoma mansoni tegument protein Sm29 is able to induce a Th1-type of immune response and protection against parasite infection. PLoS Negl Trop Dis 2(10):e308

    PubMed  PubMed Central  Google Scholar 

  • Chevillard C, Moukoko CE, Elwali NE, Bream JH, Kouriba B, Argiro L, Rahoud S, Mergani A, Henri S, Gaudart J, Mohamed-Ali Q, Young HA, Dessein AJ (2003) IFN-gamma polymorphisms (IFN-gamma +2109 and IFN-gamma +3810) are associated with severe hepatic fibrosis in human hepatic schistosomiasis (Schistosoma mansoni). J Immunol 171(10):5596–5601

    CAS  PubMed  Google Scholar 

  • Colley DG, Bustinduy AL, Secor WE, King CH (2014) Human schistosomiasis. Lancet 383(9936):2253–2264

    PubMed  PubMed Central  Google Scholar 

  • Coutinho HM, Acosta LP, Wu HW, McGarvey ST, Su L, Langdon GC, Jiz MA, Jarilla B, Olveda RM, Friedman JF, Kurtis JD (2007) Th2 cytokines are associated with persistent hepatic fibrosis in human Schistosoma japonicum infection. J Infect Dis 195(2):288–295

    CAS  PubMed  Google Scholar 

  • Diaz A, Sagasti C, Casaravilla C (2018) Granulomatous responses in larval taeniid infections. Parasite Immunol 40(5):e12523

    CAS  PubMed  Google Scholar 

  • Dillon GP, Feltwell T, Skelton JP, Ashton PD, Coulson PS, Quail MA, Nikolaidou-Katsaridou N, Wilson RA, Ivens AC (2006) Microarray analysis identifies genes preferentially expressed in the lung schistosomulum of Schistosoma mansoni. Int J Parasitol 36(1):1–8

    CAS  PubMed  Google Scholar 

  • El Ridi R, Tallima H (2009) Schistosoma mansoni ex vivo lung-stage larvae excretory-secretory antigens as vaccine candidates against schistosomiasis. Vaccine 27(5):666–673

    PubMed  Google Scholar 

  • El Ridi R, Tallima H, Mahana N, Dalton JP (2010) Innate immunogenicity and in vitro protective potential of Schistosoma mansoni lung schistosomula excretory--secretory candidate vaccine antigens. Microbes Infect 12(10):700–709

    PubMed  Google Scholar 

  • Gao Y, Zhou X, Wang H, Liu R, Ye Q, Zhao Q, Ming Z, Dong H (2017) Immunization with recombinant schistosome adenylate kinase 1 partially protects mice against Schistosoma japonicum infection. Parasitol Res 116(6):1665–1674

    PubMed  Google Scholar 

  • GBD (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1211–1259

    Google Scholar 

  • Henri S, Chevillard C, Mergani A, Paris P, Gaudart J, Camilla C, Dessein H, Montero F, Elwali NE, Saeed OK, Magzoub M, Dessein AJ (2002) Cytokine regulation of periportal fibrosis in humans infected with Schistosoma mansoni: IFN-gamma is associated with protection against fibrosis and TNF-alpha with aggravation of disease. J Immunol 169(2):929–936

    CAS  PubMed  Google Scholar 

  • Hoffmann KF, Cheever AW, Wynn TA (2000) IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J Immunol 164(12):6406–6416

    CAS  PubMed  Google Scholar 

  • Hong Y, Huang L, Yang J, Cao X, Han Q, Zhang M, Han Y, Fu Z, Zhu C, Lu K, Li X, Lin J (2015) Cloning, expression and enzymatic characterization of 3-phosphoglycerate kinase from Schistosoma japonicum. Exp Parasitol 159:37–45

    CAS  PubMed  Google Scholar 

  • Huang W, Gu M, Cheng W, Zhao QP, Ming Z, Dong H (2020) Characteristics and function of cathepsin L3 from Schistosoma japonicum. Parasitol Res 119:1619–1628

    PubMed  Google Scholar 

  • John MW (2009) The ELISA Guidebook, 2nd edn. Humana Press, New York

    Google Scholar 

  • Kautz-Neu K, Noordegraaf M, Dinges S, Bennett CL, John D, Clausen BE, von Stebut E (2011) Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med 208(5):885–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen SK, Munir S, Woetmann A, Frøsig TM, Odum N, Svane IM, Becker JC, Andersen MH (2013) Functional characterization of Foxp3-specific spontaneous immune responses. Leukemia 27(12):2332–2340

    CAS  PubMed  Google Scholar 

  • Li MJ, Lei JH, Wang T, Lu SJ, Guan F, Liu WQ, Li YL (2011) Cimetidine enhances the protective effect of GST DNA vaccine against Schistosoma japonicum. Exp Parasitol 128(4):427–432

    CAS  PubMed  Google Scholar 

  • Lin MH, Lee KM, Hsu CY, Peng SY, Lin CN, Chen CC, Fan CK, Cheng PC (2019) Immunopathological effects of Agaricus blazei Murill polysaccharides against Schistosoma mansoni infection by Th1 and NK1 cells differentiation. Int Immunopharmacol 73:502–514

    CAS  PubMed  Google Scholar 

  • Ma L, Li D, Yuan C, Zhang X, Ta N, Zhao X, Li Y, Feng X (2017) SjCRT, a recombinant Schistosoma japonicum calreticulin, induces maturation of dendritic cells and a Th1-polarized immune response in mice. Parasit Vectors 10(1):570

    PubMed  PubMed Central  Google Scholar 

  • Maizels RM, McSorley HJ (2016) Regulation of the host immune system by helminth parasites. J Allergy Clin Immunol 138(3):666–675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard CL, Weaver CT (2008) Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol Rev 226:219–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • McManus DP, Gray DJ, Li Y, Feng Z, Williams GM, Stewart D, Rey-Ladino J, Ross AG (2010) Schistosomiasis in the People’s Republic of China: the era of the Three Gorges Dam. Clin Microbiol Rev 23(2):442–466

    PubMed  PubMed Central  Google Scholar 

  • Mo HM, Liu WQ, Lei JH, Cheng YL, Wang CZ, Li YL (2007) Schistosoma japonicum eggs modulate the activity of CD4+ CD25+ Tregs and prevent development of colitis in mice. Exp Parasitol 116(4):385–389

    CAS  PubMed  Google Scholar 

  • Moloney NA, Doenhoff MJ, Webbe G, Hinchcliffe P (1982) Studies on the host-parasite relationship of Schistosoma japonicum in normal and immunosuppressed mice. Parasite Immunol 4(6):431–440

    CAS  PubMed  Google Scholar 

  • Moon H, Lim HS (2015) Synthesis and screening of small-molecule alpha-helix mimetic libraries targeting protein-protein interactions. Curr Opin Chem Biol 24:38–47

    CAS  PubMed  Google Scholar 

  • Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2(7):499–511

    CAS  PubMed  Google Scholar 

  • Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14(3):181–194

    CAS  PubMed  Google Scholar 

  • Perez-Casal J, Potter AA (2016) Glyceradehyde-3-phosphate dehydrogenase as a suitable vaccine candidate for protection against bacterial and parasitic diseases. Vaccine 34(8):1012–1017

    CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    CAS  PubMed  Google Scholar 

  • Ricciardi A, Dalton JP, Ndao M (2015) Evaluation of the immune response and protective efficacy of Schistosoma mansoni Cathepsin B in mice using CpG dinucleotides as adjuvant. Vaccine 33(2):346–353

    CAS  PubMed  Google Scholar 

  • Romano A, Hou X, Sertorio M, Dessein H, Cabantous S, Oliveira P, Li J, Oyegue S, Arnaud V, Luo X, Daujat-chavanieu M, Mariani O, Sastre X, Dombey AM, He H, Li Y, Dessein A (2016) FOXP3+ Regulatory T Cells in hepatic fibrosis and splenomegaly caused by Schistosoma japonicum: the spleen may be a major source of Tregs in subjects with splenomegaly. PLoS Negl Trop Dis 10(1):e0004306

    PubMed  PubMed Central  Google Scholar 

  • Sawant DV, Gravano DM, Vogel P, Giacomin P, Artis D, Vignali DA (2014) Regulatory T cells limit induction of protective immunity and promote immune pathology following intestinal helminth infection. J Immunol 192(6):2904–2912

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Zhang ZS, Wu HW, Weir RE, Xie ZW, Hu LS, Chen SZ, Ji MJ, Su C, Zhang Y, Bickle QD, Cousens SN, Taylor MG, Wu GL (2003) IFN-gamma is associated with risk of Schistosoma japonicum infection in China. Parasite Immunol 25(10):483–487

    CAS  PubMed  Google Scholar 

  • Smith KA, Filbey KJ, Reynolds LA, Hewitson JP, Harcus Y, Boon L, Sparwasser T, Hämmerling G, Maizels RM (2016) Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol 9(2):428–443

    CAS  PubMed  Google Scholar 

  • Stephen-Victor E, Bosschem I, Haesebrouck F, Bayry J (2017) The Yin and Yang of regulatory T cells in infectious diseases and avenues to target them. Cell Microbiol 19(6):e12746

  • Stober CB, Lange UG, Roberts MT, Alcami A, Blackwell JM (2005) IL-10 from regulatory T cells determines vaccine efficacy in murine Leishmania major infection. J Immunol 175(4):2517–2524

    CAS  PubMed  Google Scholar 

  • Tallima H, Dvorak J, Kareem S, Abou El Dahab M, Aziz N, Dalton JP, El Ridi R (2017) Protective immune responses against Schistosoma mansoni infection by immunization with functionally active gut-derived cysteine peptidases alone and in combination with glyceraldehyde 3-phosphate dehydrogenase. PLoS Negl Trop Dis 11(3):e0005443

    PubMed  PubMed Central  Google Scholar 

  • Tang CL, Lei JH, Wang T, Lu SJ, Guan F, Liu WQ, Li YL (2011) Effect of CD4+ CD25+ regulatory T cells on the immune evasion of Schistosoma japonicum. Parasitol Res 108(2):477–480

    PubMed  Google Scholar 

  • Tang CL, Shen Z, Cheng L, Jiang M, Liu X (2016) The function of glyceraldehyde phosphate dehydrogenase in mice infected with Schistosoma japonicum. J Pathog Biol 11(7):638–642 [in Chinese]

    Google Scholar 

  • Tang CL, Yang J, Cheng LY, Cheng LF, Liu ZM (2017) Anti-CD25 monoclonal antibody enhances the protective efficacy of Schistosoma japonicum GST vaccine via inhibition of CD4(+)CD25(+)Foxp3(+) regulatory T cells. Parasitol Res 116(10):2727–2732

    PubMed  Google Scholar 

  • Tang CL, Xie YP, Yu WH, Jin L, Xie ZL, Li XR (2019) Effects of regulatory T cells on glyceraldehyde-3-phosphate dehydrogenase vaccine efficacy against Schistosoma japonicum. Acta Trop 202:105239

    PubMed  Google Scholar 

  • Tang CL, Yang JF, Pan Q, Zhang RH, Xie YP, Xiong Y, Zhou HH (2020) Anti-CTLA-4 monoclonal antibody improves efficacy of the glyceraldehyde-3-phosphate dehydrogenase protein vaccine against Schistosoma japonicum in mice. Parasitol Res 118(7):2287–2293

    Google Scholar 

  • Teixeira de Melo T, Michel de Araujo J, Do Valle Duraes F, Caliari MV, Oliveira SC, Coelho PM, Fonseca CT (2010) Immunization with newly transformed Schistosoma mansoni schistosomula tegument elicits tegument damage, reduction in egg and parasite burden. Parasite Immunol 32(11-12):749–759

    CAS  PubMed  Google Scholar 

  • UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Google Scholar 

  • Waine GJ, Becker M, Yang W, Kalinna B, McManus DP (1993) Cloning, molecular characterization, and functional activity of Schistosoma japonicum glyceraldehyde-3-phosphate dehydrogenase, a putative vaccine candidate against schistosomiasis japonica. Infect Immun 61(11):4716–4723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhou S, Chi Y, Wen X, Hoellwarth J, He L, Liu F, Wu C, Dhesi S, Zhao JQ, Hu W, Su C (2009) CD4+CD25+ Treg induction by an HSP60-derived peptide SJMHE1 from Schistosoma japonicum is TLR2 dependent. Eur J Immunol 39(11):3052–3065

    CAS  PubMed  Google Scholar 

  • WHO (2019) Schistosomiasis. https://www.who.int/news-room/fact-sheets/detail/schistosomiasis?tdsourcetag=s_pcqq_aiomsg. Accessed 14 Dec 2019

  • Wilson MS, Mentink-Kane MM, Pesce JT, Ramalingam TR, Thompson R, Wynn TA (2007) Immunopathology of schistosomiasis. Immunol Cell Biol 85(2):148–154

    CAS  PubMed  Google Scholar 

  • Wilson MS, Cheever AW, White SD, Thompson RW, Wynn TA (2011) IL-10 blocks the development of resistance to re-infection with Schistosoma mansoni. PLoS Pathog 7(8):e1002171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong S, Guo R, Yang Z, Xu L, Du L, Li R, Xiao F, Wang Q, Zhu M, Pan X (2015) Treg depletion attenuates irradiation-induced pulmonary fibrosis by reducing fibrocyte accumulation, inducing Th17 response, and shifting IFN-gamma, IL-12/IL-4, IL-5 balance. Immunobiology 220(11):1284–1291

    CAS  PubMed  Google Scholar 

  • Ye Q, Zhu JY, Ming ZP, Zhao QP, Grevelding CG, Liu R, Zhong QP, Jiang MS, Dong HF (2012) Studies on the establishment of a co-culture system of lung stage Schistosoma japonicum with host cells. Parasitol Res 111(2):735–748

    PubMed  Google Scholar 

  • You H, Liu C, Du X, Nawaratna S, Rivera V, Harvie M, Jones M, McManus DP (2018) Suppression of Schistosoma japonicum acetylcholinesterase affects parasite growth and development. Int J Mol Sci 19(8):2426

    PubMed Central  Google Scholar 

  • Zeng D, Liu Y, Sidobre S, Kronenberg M, Strober S (2003) Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J Clin Invest 112(8):1211–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Mi J, Yu Y, Yao H, Chen H, Li M, Cao X (2001) IFN-gamma gene therapy by intrasplenic hepatocyte transplantation: a novel strategy for reversing hepatic fibrosis in Schistosoma japonicum-infected mice. Parasite Immunol 23(1):11–17

    PubMed  Google Scholar 

  • Zhou S, Ling J, Jiang M (2001) Schistosoma. Science Press, Beijing [in Chinese]

    Google Scholar 

Download references

Acknowledgments

We thank Yanru Gao for her assistance in this work. We thank Chunlian Tang for guiding the flow cytometric analysis and the modification of this article. We thank the Structural Bioinformatics Group (Imperial College, London) for the free use of Phyre2. We also acknowledge the molecular graphics and analyses generated by UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311.

Funding

This study was funded by the National Natural Science Foundation of China (No. 81273010) and the Scientific Research Subject of the Health and Family Planning Commission of Hubei Province (No. XF2012-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifen Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Ethical approval

All animal experiments were carried out in absolute accordance with the Guideline for the Care and Use of Laboratory Animals of the National Institutes of Health in China and were approved by the Center for Animal Experiment of Wuhan University (approval no. 2019103).

Additional information

Section Editor: Ramaswamy Kalyanasundaram

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

The PCR and SDS-PAGE results of SjGAPDH. a PCR of SjGAPDH expression. M, marker; lanes 1 and 2, PCR amplification products of the SjGAPDH partial CDS. b SDS-PAGE of SjGAPDH. M, marker; lanes 1 and lane 2, E. coli BL21 (DE3) cells transformed with plasmid pET-28a(+)/SjGAPDH before and after culture with 1 mM isopropyl-β-thiogalactopyranoside; lanes 3 and 4, soluble and insoluble components after lysis. c Purified SjGAPDH. M, marker; lane 1, solution after Ni-NTA agarose binding; lanes 2, 3, and 4, first, second and third wash solutions; lane 5, purified SjGAPDH. d Kinetic activity assay of rSjGAPDH (PNG 414 kb)

High resolution image (TIF 5121 kb)

Fig. S2

Representative regulatory T cell frequency in each group. a, a' A representative image of the sample from the uninfected control group. b, b' A representative image of the infected control group. c, c' A representative image of the Freund’s adjuvant control group. d, d' A representative image of the adjuvanted SjCL3 group. e, e' A representative image of the adjuvanted SjGAPDH group. f, f' A representative image of the adjuvant-free combination group. g, g' A representative picture of the adjuvanted combination group. The upper row represents all splenic lymphocytes from one mouse, in which the cells in the gate show the CD4+ cell frequency. The lower row represents the CD25+ and/or Foxp3+ frequency derived from the CD4+ cells (cells from the upper row gate), in which Q2 represents the CD25+Foxp3+ cell frequency (% CD4+). (PNG 590 kb)

High resolution image (TIF 6337 kb)

ESM 1

Sequencing results of SjGAPDH (TXT 356 bytes)

ESM 2

All raw data in this study (XLSX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Gu, M., Cheng, W. et al. Mechanism by which the combination of SjCL3 and SjGAPDH protects against Schistosoma japonicum infection. Parasitol Res 120, 173–185 (2021). https://doi.org/10.1007/s00436-020-06916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06916-9

Keywords

Navigation