Skip to main content
Log in

ATP synthase: an identified target gene of bantam in paired female Schistosoma japonicum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs that function in transcriptional and post-transcriptional regulation of gene expression. An increasing number of schistosome miRNAs have been identified and are expected possibly involved in differentiation, development, and metabolism. However, limited information is available concerning the target genes of schistosome miRNAs. In the present study, the key target genes of bantam, an abundant miRNA found in paired female Schistosoma japonicum, were predicted by bioinformatics analysis and Solexa technology. Luciferase reporter assay and bantam mimic assay were applied in combination to further verify the targets of bantam. Results showed that ATP synthase (CAX76793.1), one of the three selected predicted targets, was confirmed as the target of bantam; bantam mimic assay results also showed that the two other predicted targets, namely, ataxia telangiectasia mutated (ATM)-related (XP_002571630.1), and ribosomal protein L30 (CAX72575.1), were not confirmed as targets. This research proposed the design and significance of reasonable biological experiments that could be performed to identify miRNA target genes in schistosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15:998

    Article  CAS  PubMed  Google Scholar 

  • Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Rajewsky N (2007) The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8:93–103

    Article  CAS  PubMed  Google Scholar 

  • Cheng G, Jin Y (2012) MicroRNAs: potentially important regulators for schistosome development and therapeutic targets against schistosomiasis. Parasitology 139:669–679

    Article  CAS  PubMed  Google Scholar 

  • Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S (2011) Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 6:e27530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cioli D (2000) Praziquantel: is there real resistance and are there alternatives? Curr Opin Infect Dis 13:659–663

    Article  CAS  PubMed  Google Scholar 

  • Copeland CS, Marz M, Rose D, Hertel J, Brindley PJ, Santana CB, Kehr S, Attolini CS, Stadler PF (2009) Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum. BMC Genomics 10:464

    Article  PubMed Central  PubMed  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Cai P, Jiang N, Wang H, Chen Q (2010) Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum. BMC Genomics 11:55

    Article  PubMed Central  PubMed  Google Scholar 

  • He YX, Yang HZ (1980) Physiological studies on the post-cercarial development of Schistosoma japonicum. Acta Zool Sin 26:32–41

    Google Scholar 

  • Huang J, Hao P, Chen H, Hu W, Yan Q, Liu F, Han ZG (2009) Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS One 4:e8206

    Article  PubMed Central  PubMed  Google Scholar 

  • Kennell JA, MacDougald OA (2005) Wnt signaling inhibits adipogenesis through beta-catenin-dependent and -independent mechanisms. J Biol Chem 280:24004–24010

    Article  CAS  PubMed  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev 6:376–385

    Article  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Tuo W, Gao H, Zhu XQ (2010) MicroRNAs of parasites: current status and future perspectives. Parasitol Res 107:501–507

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Marco A, Kozomara A, Hui JH, Emery AM, Rollinson D, Griffiths-Jones S, Ronshaugen M (2013) Sex-biased expression of microRNAs in Schistosoma mansoni. PLoS Negl Trop Dis 7:e2402

    Article  PubMed Central  PubMed  Google Scholar 

  • Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Front Genet 5:23

    Article  PubMed Central  PubMed  Google Scholar 

  • Ritchie W, Rasko JE (2014) Refining microRNA target predictions: sorting the wheat from the chaff. Biochem Biophys Res Commun 445:780–4

    Article  CAS  PubMed  Google Scholar 

  • Simões MC, Lee J, Djikeng A, Cerqueira GC, Zerlotini A, da Silva-Pereira RA, Dalby AR, LoVerde P, El-Sayed NM, Oliveira G (2011) Identification of Schistosoma mansoni microRNAs. BMC Genomics 12:47

    Article  PubMed Central  PubMed  Google Scholar 

  • Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J (2006) Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:411–425

    Article  PubMed  Google Scholar 

  • Sun J, Wang S, Li C, Ren Y, Wang J (2014a) Novel expression profiles of microRNAs suggest that specific miRNAs regulate gene expression for the sexual maturation of female Schistosoma japonicum after pairing. Parasite Vector 7:177

    Article  Google Scholar 

  • Sun J, Wang SW, Li C, Hu W, Ren YJ, Wang JQ (2014b) Transcriptome profilings of female Schistosoma japonicum reveal significant differential expression of genes after pairing. Parasitol Res 113:881–892

    Article  PubMed  Google Scholar 

  • Wang Z, Xue X, Sun J, Luo R, Xu X, Jiang Y, Zhang Q, Pan W (2010) An "in-depth" description of the small non-coding RNA population of Schistosoma japonicum schistosomulum. PLoS Negl Trop Dis 4:e596

    Article  PubMed Central  PubMed  Google Scholar 

  • Xue X, Sun J, Zhang Q, Wang Z, Huang Y, Pan W (2008) Identification and characterization of novel microRNAs from Schistosoma japonicum. PLoS One 3:e4034

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng H, Fu R, Wang JT, Liu Q, Chen H, Jiang SW (2013) Advances in the Techniques for the Prediction of microRNA Targets. Int J Mol Sci 14:8179–87

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Pan W. Q. for his valuable advice. We also appreciate the discussions and comments from Xiao S. H., Zhang Q. F., and Xu X. D. We thank Shenzhen Huada Gene Research Institute for Solexa analysis. This research was supported by the National Natural Science Foundation of China (Grant No. 81071383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

A total of 232 up-regulated genes were predicted as target genes in 23DSI compared with 23SSI. (XLSX 35.2 kb)

Table S2

A total of 1619 down-regulated genes were predicted as target genes in 23DSI compared with 23SSI. (XLSX 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, SW. & Li, C. ATP synthase: an identified target gene of bantam in paired female Schistosoma japonicum . Parasitol Res 114, 593–600 (2015). https://doi.org/10.1007/s00436-014-4221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4221-1

Keywords

Navigation