Skip to main content
Log in

Differential inhibition of host cell cholesterol de novo biosynthesis and processing abrogates Eimeria bovis intracellular development

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Eimeria bovis macromeront formation in bovine endothelial host cells is an energy- and nutrient-demanding process. Obligate intracellular replicating coccidians are generally considered as auxotrophic for cholesterol synthesis and scavenge cholesterol from the host cell by either enhancing the uptake of extracellular cholesterol sources or by upregulating the host cellular de novo biosynthesis. We here focused on the latter mechanism and analyzed the effects of several inhibitors targeting the host cellular mevalonate biosynthesis pathway and cholesterol processing. The following inhibitors were used: lovastatin, squalestatin, CI976 and C75 targeting HMG-CoA reductase, squalene synthase, acyl-CoA:cholesterol acyltransferase, and fatty acid synthase, respectively. In summary, all inhibitors significantly interfered with E. bovis meront formation and merozoite production in a dose-dependent manner. Dose effect responses identified lovastatin as the most effective compound, followed by CI976, C75, and squalestatin, respectively. Overall, merozoite production was inhibited by 99.6, 99.7, 84.6, and 70.2 % via lovastatin (1 μM), CI976, C75, and squalestatin (all 5 μM) treatments, respectively. Concerning macromeront formation, both the rate and size of developing meronts were affected by inhibitor treatments. The effects were characterized by developmental arrest and meront degradation. In the case of CI976 treatment, we additionally observed detrimental effects on host cellular lipid droplet formation leading to meront developmental arrest irrespective of the time point of treatment onset. These analyses clearly indicate that successful E. bovis intracellular development strictly depends on the host cellular de novo biosynthesis of cholesterol and on the adequate subsequent processing thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blader IJ, Manger ID, Boothroyd JC (2001) Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J Biol Chem 276:24223–31. doi:10.1074/jbc.M100951200

    Article  PubMed  CAS  Google Scholar 

  • Brautbar A, Ballantyne CM (2011) Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nat Rev Cardiol 8:253–65. doi:10.1038/nrcardio.2011.2

    Article  PubMed  CAS  Google Scholar 

  • Brown WV (2001) Novel approaches to lipid lowering: what is on the horizon? Am J Cardiol 87:23B–27B

    Article  PubMed  CAS  Google Scholar 

  • Burgess A, Vigneron S, Brioudes E, Labbe JC, Lorca T, Castro A (2010) Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. PNAS 107:12564–9. doi:10.1073/pnas.0914191107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chambers K, Judson B, Brown WJ (2005) A unique lysophospholipid acyltransferase (LPAT) antagonist, CI-976, affects secretory and endocytic membrane trafficking pathways. J Cell Sci 118:3061–71. doi:10.1242/jcs.02435

    Article  PubMed  CAS  Google Scholar 

  • Chirala SS, Wakil SJ (2004) Structure and function of animal fatty acid synthase. Lipids 39:1045–53

    Article  PubMed  CAS  Google Scholar 

  • Coppens I (2013) Targeting lipid biosynthesis and salvage in apicomplexan parasites for improved chemotherapies. Nat Rev Microbiol 11:823–35. doi:10.1038/nrmicro3139

    Article  PubMed  CAS  Google Scholar 

  • Coppens I, Joiner KA (2003) Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol Biol Cell 14:3804–20. doi:10.1091/mbc.E02-12-0830

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Coppens I, Vielemeyer O (2005) Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. Int J Parasitol 35:597–615. doi:10.1016/j.ijpara.2005.01.009

    Article  PubMed  CAS  Google Scholar 

  • Coppens I, Sinai AP, Joiner KA (2000) Toxoplasma gondii exploits host low-density lipoprotein receptor-mediated endocytosis for cholesterol acquisition. J Cell Biol 149:167–80

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cortez E, Stumbo AC, Oliveira M, Barbosa HS, Carvalho L (2009) Statins inhibit Toxoplasma gondii multiplication in macrophages in vitro. Int J Antimicrob Agents 33:185–6. doi:10.1016/j.ijantimicag.2008.07.026

    Article  PubMed  CAS  Google Scholar 

  • D’Avila H, Freire-de-Lima CG, Roque NR, Teixeira L, Barja-Fidalgo C, Silva AR, Melo RC, Dosreis GA, Castro-Faria-Neto HC, Bozza PT (2011) Host cell lipid bodies triggered by Trypanosoma cruzi infection and enhanced by the uptake of apoptotic cells are associated with prostaglandin E2 generation and increased parasite growth. J Infect Dis 204:951–61. doi:10.1093/infdis/jir432

    Article  PubMed  Google Scholar 

  • Daugschies A, Najdrowski M (2005) Eimeriosis in cattle: current understanding. J Vet Med B Infect Dis Vet Public Health 52:417–27. doi:10.1111/j.1439-0450.2005.00894.x

    Article  PubMed  CAS  Google Scholar 

  • Daugschies A, Burger HJ, Akimaru M (1998) Apparent digestibility of nutrients and nitrogen balance during experimental infection of calves with Eimeria bovis. Vet Parasitol 77:93–102

    Article  PubMed  CAS  Google Scholar 

  • Ehrenman K, Wanyiri JW, Bhat N, Ward HD, Coppens I (2013) Cryptosporidium parvum scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes. Cell Microbiol 15:1182–97. doi:10.1111/cmi.12107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fiege N, Klatte D, Kollmann D, Zahner H, Burger HJ (1992) Eimeria bovis in cattle: colostral transfer of antibodies and immune response to experimental infections. Parasitol Res 78:32–8

    Article  PubMed  CAS  Google Scholar 

  • Flavin R, Peluso S, Nguyen PL, Loda M (2010) Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol 6:551–62. doi:10.2217/fon.10.11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gavet O, Pines J (2010) Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol 189:247–59. doi:10.1083/jcb.200909144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grellier P, Valentin A, Millerioux V, Schrevel J, Rigomier D (1994) 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors lovastatin and simvastatin inhibit in vitro development of Plasmodium falciparum and Babesia divergens in human erythrocytes. Antimicrob Agents Chemother 38:1144–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hammond DM, Fayer R (1968) Cultivation of Eimeria bovis in three established cell lines and in bovine tracheal cell lines cultures. J Parasitol 54:559–568

    Article  Google Scholar 

  • Hammond DM, Ernst JV, Miner ML (1966) The development of first generation schizonts of Eimeria bovis. J Protozool 13:559–564

    Article  Google Scholar 

  • Hermosilla C, Burger HJ, Zahner H (1999) T cell responses in calves to a primary Eimeria bovis infection: phenotypical and functional changes. Vet Parasitol 84:49–64

    Article  PubMed  CAS  Google Scholar 

  • Hermosilla C, Barbisch B, Heise A, Kowalik S, Zahner H (2002) Development of Eimeria bovis in vitro: suitability of several bovine, human and porcine endothelial cell lines, bovine fetal gastrointestinal, Madin-Darby bovine kidney (MDBK) and African green monkey kidney (VERO) cells. Parasitol Res 88:301–7

    Article  PubMed  CAS  Google Scholar 

  • Hermosilla C, Schropfer E, Stowasser M, Eckstein-Ludwig U, Behrendt JH, Zahner H (2008) Cytoskeletal changes in Eimeria bovis-infected host endothelial cells during first merogony. Vet Res Commun 32:521–31. doi:10.1007/s11259-008-9054-x

    Article  PubMed  Google Scholar 

  • Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9:125–38. doi:10.1038/nrm2336

    Article  PubMed  CAS  Google Scholar 

  • Istvan ES, Deisenhofer J (2001) Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292:1160–4. doi:10.1126/science.1059344

    Article  PubMed  CAS  Google Scholar 

  • Jackson AR (1964) The isolation of viable coccidial sporozoites. Parasitol 54:87–93

    Article  CAS  Google Scholar 

  • Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. identification by morphologic and immunologic criteria. J Clin Invest 52:2745–56. doi:10.1172/JCI107470

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kam NT, Albright E, Mathur S, Field FJ (1990) Effect of lovastatin on acyl-CoA: cholesterol O-acyltransferase (ACAT) activity and the basolateral-membrane secretion of newly synthesized lipids by CaCo-2 cells. Biochem J 272:427–33

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA (2000) Synthesis and antitumor activity of an inhibitor of fatty acid synthase. PNAS 97:3450–4. doi:10.1073/pnas.050582897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Labaied M, Jayabalasingham B, Bano N, Cha SJ, Sandoval J, Guan G, Coppen I (2011) Plasmodium salvages cholesterol internalized by LDL and synthesized de novo in the liver. Cell Microbiol 13:569–86. doi:10.1111/j.1462-5822.2010.01555.x

    Article  PubMed  CAS  Google Scholar 

  • Liao JK (2002) Isoprenoids as mediators of the biological effects of statins. J Clin Invest 110:285–8. doi:10.1172/JCI16421

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lige B, Sampels V, Coppens I (2013) Characterization of a second sterol-esterifying enzyme in Toxoplasma highlights the importance of cholesterol storage pathways for the parasite. Mol Microbiol 87:951–67. doi:10.1111/mmi.12142

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lindsey S, Harwood HJ Jr (1995) Inhibition of mammalian squalene synthetase activity by zaragozic acid A is a result of competitive inhibition followed by mechanism-based irreversible inactivation. J Biol Chem 270:9083–96

    Article  PubMed  CAS  Google Scholar 

  • Lutz K (2008) Charakterisierung des Eimeria bovis Mikronemenproteins 4 (EbMIC4) und erste Studien zur Modulation des Wirtszell-Proteoms durch Eimeria bovis. Dissertation. Justus-Liebig Universitaet. Giessen

  • Martins-Duarte ES, Urbina JA, de Souza W, Vommaro RC (2006) Antiproliferative activities of two novel quinuclidine inhibitors against Toxoplasma gondii tachyzoites in vitro. J Antimicrob Chemother 58:59–65. doi:10.1093/jac/dkl180

    Article  PubMed  CAS  Google Scholar 

  • Matsuo S, Yang WL, Aziz M, Kameoka S, Wang P (2014) Fatty acid synthase inhibitor C75 ameliorates experimental colitis. Mol Med 20:1–9. doi:10.2119/molmed.2013.00113

    Article  PubMed  PubMed Central  Google Scholar 

  • Mbaya B, Rigomier D, Edorh GG, Karst F, Schrevel J (1990) Isoprenoid metabolism in Plasmodium falciparum during the intraerythrocytic phase of malaria. Biochem Biophys Res Commun 173:849–54

    Article  PubMed  CAS  Google Scholar 

  • Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–77. doi:10.1038/nrc2222

    Article  PubMed  CAS  Google Scholar 

  • Motulsky HJ, Christopoulos A (2003) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. GraphPad Software Inc, San Diego

    Google Scholar 

  • Nishikawa Y, Quittnat F, Stedman TT, Voelker DR, Choi JY, Zahn M, Yang M, Pypaert M, Joiner KA, Coppens I (2005) Host cell lipids control cholesteryl ester synthesis and storage in intracellular Toxoplasma. Cell Microbiol 7:849–67. doi:10.1111/j.1462-5822.2005.00518.x

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa Y, Ibrahim HM, Kameyama K, Shiga I, Hiasa J, Xuan X (2011) Host cholesterol synthesis contributes to growth of intracellular Toxoplasma gondii in macrophages. J Vet Med Sci 73:633–9

    Article  PubMed  CAS  Google Scholar 

  • Nyberg PA, Hammond DM (1965) Description of the sporulated oozysts and sporozoites of four species of bovine coccidia. J Parasitol 51:669–673

    Article  PubMed  CAS  Google Scholar 

  • Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant JM, Dunn M, Hung SS, Kawahara F, Miranda-Saavedra D, Malas T, Mourier T, Naghra H, Nair M, Otto TD, Rawlings ND, Rivailler P, Sanchez-Flores A, Sanders M, Subramaniam C, Tay YL, Woo Y, Wu X, Barrell B, Dear PH, Doerig C, Gruber A, Ivens AC, Parkinson J, Rajandream MA, Shirley MW, Wan KL, Berriman M, Tomley FM, Pain A (2014) Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res. doi:10.1101/gr.168955.113

    PubMed  Google Scholar 

  • Sandager L, Gustavsson MH, Ståhl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–82. doi:10.1074/jbc.M109109200

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JA, Brown WJ (2009) Lysophosphatidic acid acyltransferase 3 regulates Golgi complex structure and function. J Cell Biol 186:211–8. doi:10.1083/jcb.200904147

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sonda S, Ting LM, Novak S, Kim K, Maher JJ, Farese RV Jr, Ernst JD (2001) Cholesterol esterification by host and parasite is essential for optimal proliferation of Toxoplasma gondii. J Biol Chem 276:34434–40. doi:10.1074/jbc.M105025200

    Article  PubMed  CAS  Google Scholar 

  • Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol 716:157–68. doi:10.1007/978-1-61779-012-6_9

    Article  PubMed  CAS  Google Scholar 

  • Taubert A, Wimmers K, Ponsuksili S, Jimenez CA, Zahner H, Hermosilla C (2010) Microarray-based transcriptional profiling of Eimeria bovis-infected bovine endothelial host cells. Vet Res 41:70. doi:10.1051/vetres/2010041

    Article  PubMed  PubMed Central  Google Scholar 

  • van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–45. doi:10.1007/978-1-61779-080-5_20

    Article  PubMed  Google Scholar 

  • Wenk MR (2006) Lipidomics of host-pathogen interactions. FEBS Lett 580:5541–51. doi:10.1016/j.febslet.2006.07.007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank A. Wehrend (Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus Liebig University, Giessen, Germany) and K. Herzog (Clinic for Cattle, University of Veterinary Medicine Hannover, Germany) for the continuous supply of bovine umbilical cords. P. H. H. was supported by a DIKTI (Direktorat Jenderal Pendidikan Tinggi Indonesia) PhD-scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penny H. Hamid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamid, P.H., Hirzmann, J., Hermosilla, C. et al. Differential inhibition of host cell cholesterol de novo biosynthesis and processing abrogates Eimeria bovis intracellular development. Parasitol Res 113, 4165–4176 (2014). https://doi.org/10.1007/s00436-014-4092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4092-5

Keywords

Navigation