Skip to main content
Log in

In vivo antimalarial activity of Trichilia megalantha harms extracts and fractions in animal models

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The crude methanol extracts of leaf, stem bark, root bark and stem bark fractions of Trichilia megalantha (Meliaceae) were screened for in vivo antimalarial activities in mice against a chloroquine resistant Plasmodium berghei berghei ANKA clone using the 4-day suppressive test procedure. Chloroquine diphosphate was used as the positive control. The extracts demonstrated intrinsic antimalarial property. Of all the seven extracts studied, the stem bark gave the highest activity. At 200 mg/kg of mouse, the stem bark extract had complete suppression of parasite growth (100 %). Least activity was observed for the leaf extract, while the root bark had a parasite suppression of 98.4 % at 800 mg/kg comparable to that of Chloroquine. Percentage suppression of parasite growth on day 4 post-infection ranged from 3.1 to 96.1 % in mice infected with P. berghei and treated with extracts and fractions of T. megalantha when compared with chloroquine diphosphate, the standard reference drug which had a chemosuppression of 96.2 %. At 400 mg/kg, the stem bark chloroform fraction was the most active fraction with 89.1 % parasite growth suppression followed by the ethyl acetate fraction (76.4 %), hexane soluble fraction (54.8 %) and methanol fraction (20.5 %). The mean survival time of mice that received extract ranged from 8.75 ± 0.65 to 26.0 ± 1.2 days (increased as the dose increases to 800 mg/kg), which was statistically significant, except the lowest dose (100 mg/kg) compared to the negative control group mice (9.45 ± 0.6 days). The animals that were treated with Chloroquine had mean survival time of 23.5 ± 1.2 days

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agbaje EO, Onabanjo AO (1991) The effects of extracts of Enantia chlorantha in malaria. Ann Trop Med Parasitol 85:585–590

    PubMed  CAS  Google Scholar 

  • Ajaiyeoba EO, Abalogu UI, Krebs HC, Oduola AMJ (1999) In vivo antimalarial activities of Quassia amara and Quassia undulata plant extracts in mice. J Ethnopharmacol 67:321–325

    Article  PubMed  CAS  Google Scholar 

  • Akalu M, Mirutse G, Abebe A, Tilahun T (2012) Ethnobotanical study of antimalarial plants in Shinile District, Somali Region, Ethiopia, and in vivo evaluation of selected ones against Plasmodium berghei. J Ethnopharmacol 139:221–227

    Article  Google Scholar 

  • Andrade-Neto VF, Brandao MGL, Stehmann JR, Oliveira LA, Krettli AU (2003) Antimalarial activity of Cinchona-like plants used to treat fever and malaria in Brazil. J Ethnopharmacol 87:253–256

    Article  PubMed  CAS  Google Scholar 

  • Azas N, Laurencin N, Delmas F, Di Giorgio C, Gasquet M, Laget M, Timon- DP (2001) Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitol Res 88(2):165–171

    Google Scholar 

  • BagavanAbdul A, Rahuman A, Kumar Kaushik N, Sahal D (2011) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108(1):15–22

    Article  Google Scholar 

  • Bathurst I, Hentschel C (2006) Medicines for malaria venture: sustaining antimalarial drug development. Trends Parasitol 22:301–307

    Article  PubMed  Google Scholar 

  • Benoit-Vical F (2005) Ethnomedicine in malaria treatment. I Drugs 8:45–52

    PubMed  CAS  Google Scholar 

  • Burkill, H.M. 1985. The useful plants of west tropical Africa, Royal Botanical Gardens, Vol. 4

  • Deck LM, Royer RE, Chamblee BB, Hernandez VM, Malone RR, Torres JE, Hunsaker LA, Piper RC, Makler MT Vander Jagt DL (1998) Selective inhibitors of human lactate dehydrogenases and lactate dehydrogenase from the malarial parasite Plasmodium falciparum. J Med Chem 41:3879–3887

    Article  PubMed  CAS  Google Scholar 

  • Deharo E, Bourdy G, Quenevo C, Mun˜oz V, Ruiz G, Sauvain M (2001) A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians. J Ethnopharmacol 77:91–98

    Article  PubMed  CAS  Google Scholar 

  • Devi U, Atul K, Pillai R (2001) Antiplasmodial effect of three medicinal plants: preliminary study. Current Sci 80:917–919

    Google Scholar 

  • Gessler MC, Nkunya MHH, Mwasunmbi LB, Heinrich M, Tanner M (1994) Screening Tanzanian medicinal plants for antimalarial activity. Acta Trop 56:65–77

    Article  PubMed  CAS  Google Scholar 

  • Kamanzi AK, Schmid C, Brun R, Kone MW, Traore D (2004) Antitrypanosomal and antiplasmodial activity of medicinal plants from Cote d’Ivoire. J Ethnopharmacol 90:221–227

    Article  Google Scholar 

  • Koch A, Tamez P, Pezzuto J, Soejarto D (2005) Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J Ethnopharmacol 101:95–99

    Article  PubMed  CAS  Google Scholar 

  • Le Tran Q, Tezuka Y, Ueda J, Nguyen NT, Maruyama Y, Begum K, Kim HS, Wataya Y, Tran QK, Kadota S (2003) In vitro antiplasmodial activity of antimalarial medicinal plants used in Vietnamese traditional medicine. J Ethnopharmacol 86:249–252

    Article  PubMed  Google Scholar 

  • Li G, Si Z, Lee P, Wong E, Xie H, Klye E, Dow S (2003) Efficacy of composition of intravenous artelinate and artesunate in Plasmodium berghei infected Sprague-Dawley rats. Parasitol 126:283–291

    Article  CAS  Google Scholar 

  • Majori G (2004) Combined antimalarial therapy using artemisinin. Parasitologia 46:85–87

    CAS  Google Scholar 

  • Mureg FW, Chhabra SC, Njagi ENM, Lang’at-Thoruwa CC, Njue WM, Orago ASS, Omar SA, Ndiege IO (2003) In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J Ethnopharmacol 84:235–239

    Article  Google Scholar 

  • Mutabingwa TK (2005) Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop 95:305–315

    Article  PubMed  CAS  Google Scholar 

  • Okeola VO, Adaramoye OA, Nneji CM, Falade CO, Farombi EO, Ademowo OG (2011) Antimalarial and antioxidant activities of methanolic extract of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelli nigeriensis. Parasitol Res 108(6):1507–1512

    Article  PubMed  Google Scholar 

  • Perez HA, De la Rosa M, Apitz R (1994) In vivo activity of ajoene against rodent malaria. Antimicrob Agents Chemother 38:337–339

    Article  PubMed  CAS  Google Scholar 

  • Peters W, Portus H, Robinson L (1975) The four day suppressive in vivo antimalarial test. Ann Trop Med Parasitol 69:155–171

    PubMed  CAS  Google Scholar 

  • QuattaraY SS, Traore Y, Mahiou V, Azas N, Sawadogo L (2006) Antimalarial activity of Swartzia madagascariensis desv. (Leguminosae), Combretum glutinosum Guill. and perr. (Combretaceae) and Tinospora bakis miers. (Menispermaceae). Burkina Faso Med Plants AJTCAM 3(1):75–81

    Google Scholar 

  • Ramazani A, Sardari S, Zakeri S, Vaziri B (2010) In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species. Parasitol Res 107(3):593–599

    Article  PubMed  Google Scholar 

  • Schlitzer M (2007) Malaria chemotherapeutics part I: history of antimalarial drug development, currently used therapeutics and drugs in clinical development. Chem Drug Discov 7:944–986

    Google Scholar 

  • Tabuti JRS (2008) Herbal medicines used in the treatment of malaria in Budiope County, Uganda. J Ethnopharmacol 116:33–42

    Article  PubMed  Google Scholar 

  • Talisuna AO, Bloland P, dD’Alessandro U (2004) History, dynamics and public health importance of malaria parasite resistant. Clin Microbiol Rev 17:235–254

    Article  PubMed  Google Scholar 

  • Togola A, Diallo D, Dembele S, Barsett H, Paulsen BS (2005) Ethnopharmacological survey of different uses of seven medicinal plants from Mali, (West Africa) in the regions Doila, Kolokani and Siby. J Ethnobiol Ethnomed 1:7

    Article  PubMed  Google Scholar 

  • Trape JF, Pison G, Spiegel A, Enel C, Rogier C (2002) Combating malaria in Africa. Trends Parasitol 18:224–230

    Article  PubMed  Google Scholar 

  • WHO (2008a) World Malaria Report 2008. World Health Organization, Geneva, pp 7–15, 99–101

  • WHO (2008b) Global Burden of Disease: 2004 Update. World Health Organization, Geneva, http://www.who.int/healthinfo/bodestimates/en/index.html

  • Zofou D, Tene M, Tane P, Titanji VPK (2012) Antimalarial drug interactions of compounds isolated from Kigelia africana (Bignoniaceae) and their synergism with artemether, against the multidrug-resistant W2mef Plasmodium falciparum strain. Parasitol Res 110(2):539–544

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith O. Ajaiyeoba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fadare, D.A., Abiodun, O.O. & Ajaiyeoba, E.O. In vivo antimalarial activity of Trichilia megalantha harms extracts and fractions in animal models. Parasitol Res 112, 2991–2995 (2013). https://doi.org/10.1007/s00436-013-3471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3471-7

Keywords

Navigation