Skip to main content

Advertisement

Log in

In-vivo antimalarial activity of aqueous leaf and bark extracts of Trema orientalis against Plasmodium berghei in mice

  • Original Article
  • Published:
Journal of Parasitic Diseases Aims and scope Submit manuscript

Abstract

The control of malaria relies on the use of chemical antimalarial, but the development of resistance necessitates research into alternatives. Trema orientalis (L.) Blume is used in Nigerian folklore medicine for the treatment of malaria. This study investigates the in vivo antiplasmodial activity of aqueous leaf and bark extracts of T. orientalis in rodent model. Swiss Albino mice weighing 23–27 g were intraperitoneally infected with Plasmodium berghei. The lethal dose in mice was estimated to be greater than 5000 mg/kg based on toxicity signs and death. Aqueous crude leaf and bark extracts were administered at 400, 800 and 1600 mg/kg. Chloroquine was used as positive control while the negative control was treated with distilled water. Parasitemia, parasite inhibition, body weight and packed cell volume (PCV) were determined. The parasite inhibition of the leaf extracts at 400, 800 and 1600 mg/kg was 51.55, 62.78 and 76.08 % while that of the bark extract was 44.3, 65.82 and 74.23 % respectively. The percentage parasitemia of the leaf extract at 400, 800 and 1600 mg/kg decreased by 45.0, 70.3 and 74.7 % while that of the bark decreased by 37.4, 53.0 and 52.0 % respectively. The PCV of mice treated with 400, 800 and 1600 mg/kg leaf extract were 48.85, 49.88 and 50.99 % while that of the bark extract was 49.38, 48.88 and 51.94 % respectively. The results indicate that the plant has a promising antiplasmodial activity against P. berghei, which validates its folkloric use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abiodun O, Gbotosho G, Ajaiyeoba E, Happi T, Falade M, Wittlin S, Sowunmi A, Brun R, Oduola A (2011) In vitro antiplasmodial activity and toxicity assessment of some plants from Nigerian ethnomedicine. Pharm Biol 49:9–14

    Article  PubMed  Google Scholar 

  • Andrade-Neto VF, Brandao MG, Stehmann JR, Oliveira LA, Krettli AU (2003) Antimalarial activity of Cinchona-like plants used to treat fever and malaria in Brazil. J Ethnopharmacol 87:253–256

    Article  CAS  PubMed  Google Scholar 

  • Ayensu ES (1978) The medicinal plants of West Africa. Reference Publications Inc., Algonac

    Google Scholar 

  • Batista R, Júnior SJA, Oliveira BA (2009) Plant-derived antimalarial agents, new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules 14:037–3072

    Article  Google Scholar 

  • Greenwood BM (1997) The epidemiology of malaria. Ann Trop Med Para 97:763–769

    Article  Google Scholar 

  • Greenwood BM, Bojang K, Whitty CJ, Targett GA (2005) Malaria. Lancet 365:1487–1498

    Article  CAS  PubMed  Google Scholar 

  • Hilou A, Nacoulma G, Guiguemde TR (2006) In vivo antimalarial activities of extracts from Amaranthus spinosus and Boerha aviaerecta in mice. J Ethnopharmacol 103:236–240

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HA, Iman IA, Bello AM, Umar U, Muhammad S, Abdullah SA (2012) The potential of Nigerian medical plant as antimalarial agent: a review. Int J Sci Technol 2(8):600–605

    Google Scholar 

  • Jain NC (1986) Schalm’s veterinary hematology, 4th edn. Lea and Febiger, Philadelphia, pp 610–612

    Google Scholar 

  • Kalra BS, Chawla S, Gupta P, Valecha N (2006) Screening of antimalarial drugs. Indian J Pharmacol 38:5–12

    Article  CAS  Google Scholar 

  • Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ (2007) Malarial anemia of mice and men. J Blood 110:18–28

    Article  CAS  Google Scholar 

  • Langhorne J, Quin SJ, Sanni LA (2002) Mouse models of blood-stage malariainfections: immune responses and cytokines involved in protection and pathology. In: Perlmann P, Troye-Blomberg M (eds) Malaria immunology, 2nd edn. Karger Publisher, Stockholm, pp 204–228

    Chapter  Google Scholar 

  • Ogunkoya L, Olubajo OO, Sondha DS (1972) Triterpenoid alcohols from Trema orientalis. Phytochemistry 1972(11):3093–3094

    Article  Google Scholar 

  • Ogunkoya L, Olubajo OO, Sondha DS (1973) Simiarenone from Trema orientalis. Phytochemistry 12:732–733

    Article  CAS  Google Scholar 

  • Ogunkoya L, Olubajo OO, Sondha DS (1977) A new triterpenoid alcohol from Trema orientalis. Phytochemistry 16:1606–1608

    Article  CAS  Google Scholar 

  • Okokon JE, Effiong I, Ettebong E (2011) In vivo antimalarial activities of ethanolic crude extracts and fractions of leaf and root of Carpolobi alutea. Pak J Pharm Sci 24:57–61

    PubMed  Google Scholar 

  • Okokon JE, Etebong EO, Udobang JA, Obot J (2012) Antiplasmodial and antiulcer activities of Melanthera scadens. Asian Pac J Trop Biomed 2:16–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Onasanya SS, Ademowo OG (2013) The antimalarial effect of different dosage Regimen of artemisinin-naphthoquine on Plasmodium berghei infected mice. Int J Pharm Ther 3:67–77

    Google Scholar 

  • Peter W, Portus H, Robinson L (1995) The four-day suppressive in vivo antimalarial test. Ann Trop Med Parasitol 69:155–171

    Article  Google Scholar 

  • Rastogi RP, Mehrotra BN (1993) Compendium of Indian medicinal plants, vol 2. Central Drug Research, Lucknow Publications & Information Directorate, New Delhi

    Google Scholar 

  • Ridley RG (2002) Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 415:686–693

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal JP (2003) Antimalarial drug discovery, old and new approaches. J Exp Biol 206:3735–3744

    Article  CAS  PubMed  Google Scholar 

  • Shakya Anita (2012) Antimalarial activity of Acacia nilotica plant on Plasmodium berghei in mice. Int J Green Herb Chem 1(2):145–150

    Google Scholar 

  • Sudhanshu S, Neerja P, Jain DC, Bhakuni RS (2003) Antimalarial agents from plant sources. Curr Sci 85(9):1314–1329

    Google Scholar 

  • Tchamo DN, Dijoux-Franca MG, Mariotte AM, Tsamo E, Daskiewicz JB, Bayet C (2000) Prenylated xanthones as potential P-glycoprotein modulators. Bioorg Med Chem Lett 10:1343–1345

    Article  CAS  PubMed  Google Scholar 

  • OECD (2001) The Organisation for Economic Cooperation and Development Guidelines for testing chemicals 423: acute oral toxicity—acute toxic class method, Ist Adoption. Organisation for Economic Cooperation and Development, Paris

  • Tran QL, Tezuka Y, Ueda JY, Nguyen NT, Maruyama Y, Begum K, Kim HS, Wataya Y, Tran QK, Kadota S (2003) In vitro antiplasmodial activity of antimalarial medicinal plants used in Vietnamese traditional medicine. J Ethnopharmacol 86:249–252

    Article  PubMed  Google Scholar 

  • Waako PJ, Gumede B, Smith P, Folb PI (2005) The in vitro and in vivo antimalarial activity of Cardiospermum halicacabum and Momordica foetida. J Ethnopharmacol 99:137–143

    Article  CAS  PubMed  Google Scholar 

  • Wanyoike GN, Chhabra SC, Lang’at-Thoruwa CC, Omar SA (2004) Brine shrimp toxicity and antiplasmodial activity of five Kenyan medicinal plants. J Ethnopharmacol 90:129–133

    Article  CAS  PubMed  Google Scholar 

  • Wright WC (2005) Plant derived antimalarial agents, new leads and challenges. Phytochem Rev 4:55–61

    Article  CAS  Google Scholar 

  • Zirihi GN, Mambu L, Guede-Guina F, Bodo B, Grellier P (2005) In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J Ethnopharmacol 98:281–285

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Mrs. Thomas and Mr. Kosoko of the Institute of Advanced Medical Research and Training, University College Hospital, Ibadan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwatoyosi Eniola Oyebola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyebola, O.E., Morenikeji, O.A. & Ademola, I.O. In-vivo antimalarial activity of aqueous leaf and bark extracts of Trema orientalis against Plasmodium berghei in mice. J Parasit Dis 41, 398–404 (2017). https://doi.org/10.1007/s12639-016-0815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12639-016-0815-0

Keywords

Navigation