Skip to main content
Log in

Prevalence of Acanthamoeba spp. (Sarcomastigophora: Acanthamoebidae) in wild populations of Aedes aegypti (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Studies of interrelationship between microorganisms and mosquitoes are of great importance, since it can provide support for better understand related to biology, development and their control. In this way, it is known that mosquito larvae and free-living amoebae (FLA) normally occupy similar aquatic microhabitats. However, few studies have been conducted about such coexistence. For that reason, the objective of the present study was to verify the prevalence of Acanthamoeba spp. in wild populations of Aedes aegypti, as well as to characterize the genotypic lineage, and their possible pathogenicity through thermo- and osmotolerance. Amoebae were investigated in 60 pools, each containing ten larvae of A. aegypti, collected in Porto Alegre (Rio Grande do Sul, Brazil). The Acanthamoeba isolates were morphologically characterized and submitted to the polymerase chain reaction technique to confirm identification of the genus. In addition, genotype analyses as well as tests for presumptive pathogenicity in some samples were performed. Of the 60 pools examined, 54 (90 %) were positive for FLA. Of these isolates, 47 (87 %) belonged to the genus Acanthamoeba. The genotypic groups T4, T3 and T5 were identified, numbering 14 (53.8 %), ten (38.5 %) and two (7.7 %) isolates, respectively. The physiological tests performed with 14 strains showed that 12 (85.7 %) were non-pathogenic, while two (14.3 %) were considered as having low pathogenic potential. These results provide a basis for a better understanding of the interaction between these protozoan and mosquitoes in their natural habitat. This study is the first to report the isolation of Acanthamoeba spp. from wild mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albicócco AP, Vezzani D (2009) Further study on Ascogregarina culicis in temperate Argentina: prevalence and intensity in Aedes aegypti larvae and pupae. J Invertebr Pathol 101:210–214

    Article  PubMed  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt extraction of high quality genomic DNA for PCR based techniques. Nucleic Acids Res 25:4692–4693

    Article  PubMed  CAS  Google Scholar 

  • Barker J, Brown MR (1994) Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 140:1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Bian G, Xu Y, Lu P, Xie Y, Xi Z (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6:e1000833

    Article  PubMed  Google Scholar 

  • Booton GC, Rogerson A, Bonilla TD, Seal DV, Kelly DJ, Beattie TK, Tomlinson A, Lares-Villa F, Fuerst PA, Byers TJ (2004) Molecular and physiological evaluation of subtropical environmental isolates of Acanthamoeba spp., causal agent of Acanthamoeba keratitis. J Eukaryot Microbiol 51:192–200

    Article  PubMed  CAS  Google Scholar 

  • Brückner D, Garcia LS (1993) Diagnostic medical parasitology, 2nd edn. American Society for Microbiology, Washington, D.C

    Google Scholar 

  • Carlesso AM, Artuso GL, Caumo K, Rott MB (2010) Potentially Pathogenic Acanthamoeba Isolated from a Hospital in Brazil. Curr Microbiol 60:185–190

    Article  PubMed  CAS  Google Scholar 

  • Caumo K, Rott MB (2011) Acanthamoeba T3, T4 and T5 in swimming-pool waters from Southern Brazil. Acta Trop 117:233–235

    Article  PubMed  Google Scholar 

  • Chen WJ (1999) The life cycle of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae). Parasitol Today 15:153–156

    Article  PubMed  CAS  Google Scholar 

  • Declerck P, Behets J, van Hoef V, Ollevier F (2007) Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41:3159–3167

    Article  PubMed  CAS  Google Scholar 

  • Dellapé ME, Marti GA, Tranchida MC, García JJ (2005) First record of Aedes aegypti (L.) (Diptera: Culicidae) infected by the parasite Ascogregarina culicis (Ross) (Apicomplexa: Lecudinidae) in Argentina. Entomol Vect 12:111–115

    Google Scholar 

  • Dos Passos RA, Tadei WP (2008) Parasitism of Ascogregarina taiwanensis and Ascogregarina culicis (Apicomplexa: Lecudinidae) in larvae of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) from Manaus, Amazon region, Brazil. J Invertebr Pathol 97:230–236

    Article  PubMed  Google Scholar 

  • Edagawa A, Kimura A, Kawabuchi-Kurata T, Kusuhara Y, Karanis P (2009) Isolation and genotyping of potentially pathogenic Acanthamoeba and Naegleria species from tap-water sources in Osaka, Japan. Parasitol Res 105:1109–1117

    Article  PubMed  Google Scholar 

  • Fellous S, Koella JC (2009) Infectious dose affects the outcome of the within-host competition between parasites. Am Nat 173:E177–E184

    Article  PubMed  Google Scholar 

  • Gaio Ade O, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ (2011) Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae) (L.). Parasit Vectors 4:105

    Article  PubMed  Google Scholar 

  • García-Munguía AM, Garza-Hernández JA, Rebollar-Tellez EA, Rodríguez-Pérez MA, Reyes-Villanueva F (2011) Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes. Parasit Vectors 4:24

    Article  PubMed  Google Scholar 

  • Gianinazzi C, Schild M, Zumkehr B et al (2010) Screening of Swiss hot spring resorts for potentially pathogenic free-living amoebae. Exp Parasitol 126:45–53

    Article  PubMed  Google Scholar 

  • Kawaguchi K, Matsuo J, Osaki T, Kamiya S, Yamaguchi H (2009) Prevalence of Helicobacter and Acanthamoeba in natural environment. Lett Appl Microbiol 48:465–471

    Article  PubMed  CAS  Google Scholar 

  • Khan NA, Jarroll EL, Paget T (2001) Acanthamoeba can be differentiated by the polymerase chain reaction and simple plating assays. Curr Microbiol 43:204–208

    Article  PubMed  CAS  Google Scholar 

  • Khan NA, Tareen NK (2003) Genotypic, phenotypic, biochemical, physiological and pathogenicity-based categorization of Acanthamoeba strains. Folia Parasitol 50:97–104

    PubMed  CAS  Google Scholar 

  • Kingston D, Warhurst DC (1969) Isolation of amoebae from the air. J Med Microbiol 2:27–36

    Article  PubMed  CAS  Google Scholar 

  • Koehsler M, Leitsch D, Duchêne M, Nagl M, Walochnik J (2009) Acanthamoeba castellanii: growth on human cell layers reactivates attenuated properties after prolonged axenic culture. FEMS Microbiol Lett 299:121–127

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo-Morales J, Ortega-Rivas A, Foronda P, Martínez E, Valladares B (2005) Isolation and identification of pathogenic Acanthamoeba strains in Tenerife, Canary Islands, Spain from water sources. Parasitol Res 95:273–277

    Article  PubMed  Google Scholar 

  • Massad E, Coutinho FA (2011) The cost of dengue control. Lancet 377:1630–1631

    Article  PubMed  Google Scholar 

  • Mortazavi PN, Goldsworthy G, Kirk R, Khan NA (2010) Acanthamoeba produces disseminated infection in locusts and traverses the locust blood–brain barrier to invade the central nervous system. BMC Microbiol 10:186

    Article  PubMed  Google Scholar 

  • Niyyati M, Lorenzo-Morales J, Rahimi F, Motevalli-Haghi A, Martín-Navarro CM, Farnia S, Valladares B, Rezaeian M (2009) Isolation and genotyping of potentially pathogenic Acanthamoeba strains from dust sources in Iran. Trans R Soc Trop Med Hyg 103:425–427

    Article  PubMed  CAS  Google Scholar 

  • Page FC (1988) A new key to freshwater and soil Gymnamoebae with instructions for culture. Freshwater Biological Association, Cumbria

    Google Scholar 

  • Paterson GN, Rittig M, Siddiqui R, Khan NA (2011) Is Acanthamoeba pathogenicity associated with intracellular bacteria? Exp Parasitol 129:207–210

    Article  PubMed  Google Scholar 

  • Pussard M, Pons R (1977) Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 13:557–598

    Google Scholar 

  • Reyes-Villanueva F, Becnel JJ, Butler JF (2003) Susceptibility of Aedes aegypti and Aedes albopictus larvae to Ascogregarina culicis and Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) from Florida. J Invertebr Pathol 84:47–53

    Article  PubMed  Google Scholar 

  • Rott M, Caumo K, Sauter I, Eckert J, da Rosa L, da Silva O (2010) Susceptibility of Aedes aegypti (Diptera: Culicidae) to Acanthamoeba polyphaga (Sarcomastigophora: Acanthamoebidae). Parasitol Res 107:195–198

    Article  PubMed  Google Scholar 

  • Sawyer TK (1971) Acanthamoeba griffini, a new species of marine amoeba. J Protozool 18:650–654

    Google Scholar 

  • Scheid PL, Schwarzenberger R (2011) Free-living amoebae as vectors of cryptosporidia. Parasitol Res 109:499–504

    Article  PubMed  Google Scholar 

  • Scholte EJ, Takken W, Knols BG (2007) Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 102:151–158

    Article  PubMed  Google Scholar 

  • Schroeder JM, Booton GC, Hay J, Niszl IA, Seal DV, Markus MB, Fuerst PA, Byers TJ (2001) Use of subgenic 18 S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoeba from humans with keratitis and from sewage sludge. J Clin Microbiol 39:1903–1911

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui R, Emes R, Elsheikha H, Khan NA (2011) Area 51: How do Acanthamoeba invade the central nervous system? Trends Parasitol 27:185–189

    Article  PubMed  Google Scholar 

  • Stockman LJ, Wright CJ, Visvesvara GS, Fields BS, Beach MJ (2011) Prevalence of Acanthamoeba spp. and other free-living amoebae in household water, Ohio, USA—1990–1992. Parasitol Res 108:621–627

    Article  PubMed  Google Scholar 

  • Stothard DR, Schroeder-Diedrich JM, Awwad MH, Gast RJ, Ledee DR, Rodriguez-Zaragoza S, Dean CL, Fuerst PA, Byers TJ (1998) The evolutionary history of the genus Acanthamoeba and the identification of eight new 18 s rRNA gene sequence types. J Eukaryot Microbiol 45:45–54

    Article  PubMed  CAS  Google Scholar 

  • Stratford MP, Griffiths AJ (1978) Variations in the properties and morphology of cysts of Acanthamoeba castellanii. J Gen Microbiol 108:33–37

    Article  CAS  Google Scholar 

  • Thomas V, Loret JF, Jousset M, Greub G (2008) Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environ Microbiol 10:2728–2745

    Article  PubMed  CAS  Google Scholar 

  • Vasilakis N, Weaver SC (2008) The history and evolution of human dengue emergence. Adv Virus Res 72:1–76

    Article  PubMed  CAS  Google Scholar 

  • Vezzani D, Wisnivesky C (2006) Prevalence and seasonality of Ascogregarina culicis (Apicomplexa: Lecudinidae) in natural populations of Aedes aegypti (Diptera: Culicidae) from temperate Argentina. J Invertebr Pathol 91:183–187

    Article  PubMed  Google Scholar 

  • Visvesvara GS (1991) Classification of Acanthamoeba. Rev Infect Dis 13:369–372

    Article  Google Scholar 

  • Weiss B, Aksoy S (2011) Microbiome influences on insect host vector competence. Trends Parasitol 27:514–522

    Article  PubMed  CAS  Google Scholar 

  • Winck MAT, Caumo K, Rott MB (2011) Prevalence of Acanthamoeba from tap water in Rio Grande do Sul, Brazil. Curr Microbiol 63:464–469

    Article  PubMed  CAS  Google Scholar 

  • Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LH, Ravelonandro P, Mavingui P (2011) Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol 75:377–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the National Council of Research and Development (CNPq/478119/2010-0) for financial support and Coordination for the Improvement of Higher Level Personal (Capes) for scholarship. Also, we thank Dr. Jaime Figueroa, Dr. Denise Haussmann and MSc. Adolfo Isla by contributions of this work in molecular biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onilda Santos da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otta, D.A., Rott, M.B., Carlesso, A.M. et al. Prevalence of Acanthamoeba spp. (Sarcomastigophora: Acanthamoebidae) in wild populations of Aedes aegypti (Diptera: Culicidae). Parasitol Res 111, 2017–2022 (2012). https://doi.org/10.1007/s00436-012-3050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3050-3

Keywords

Navigation