Skip to main content

Advertisement

Log in

Proteomic analysis of salivary glands of female Anopheles barbirostris species A2 (Diptera: Culicidae) by two-dimensional gel electrophoresis and mass spectrometry

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Salivary gland proteins of adult female Anopheles barbirostris species A2, a potential vector of Plasmodium vivax in Thailand, were analyzed using a proteomic approach (two-dimensional gel electrophoresis followed by nanoLC-MS). Two-dimensional gel electrophoresis revealed approximately 75 well-resolved spots on the reference gel. Most of the protein spots displayed relative molecular masses from 14 to 85 kDa and isoelectric points ranging from 3.9 to 10. The proteome profiles of A. barbirostris species A2 female salivary glands were affected by aging. The typical electrophoretic pattern of the female salivary glands was reached in 48 h post emergence, suggesting the maturation of salivary glands and saliva contents for blood feeding. Proteins involved in blood feeding, i.e., putative 5′ nucleotidase/apyrase, anti-platelet protein, long form D7 salivary protein, D7-related 1 protein, and gSG6 salivary protein, start to accumulate from emergence and gradually increase becoming predominant within 48 h. There are different salivary components expressed within each region of the female glands. The blood-feeding proteins were detected in the distal-lateral lobes and/or medial lobes. Proteins detected and/or identified by this approach could be tested in strategies developed to control pathogen and disease transmission. Moreover, the information of a 2D map of the female salivary gland could be used for comparison with other related species in the A. barbirostris complex to distinguish species members in the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al-Ahdal MN, Al-Hussain K, Thorogood RJ, Reilly HC, Wilson JD (1990) Protein constituents of mosquito saliva: studies on Culex molestus. J Trop Med Hyg 93:98–105

    PubMed  CAS  Google Scholar 

  • Arca B, Lombardo F, de Lara Capurro M, della Torre A, Dimopoulos G, James AA, Coluzzi M (1999) Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae. Proc Natl Acad Sci U S A 96:1516–1521

    Article  PubMed  CAS  Google Scholar 

  • Arca B, Lombardo F, Lanfrancotti A, Spanos L, Veneri M, Louis C, Coluzzi M (2002) A cluster of four D7-related genes is expressed in the salivary glands of the African malaria vector Anopheles gambiae. Insect Mol Biol 11:47–55

    Article  PubMed  CAS  Google Scholar 

  • Arca B, Lombardo F, Valenzuela JG, Franscischetti IM, Marinotti O, Coluzzi M, Ribeiro JMC (2005) An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol 208:3971–3986

    Article  PubMed  CAS  Google Scholar 

  • Bahia D, Gontijo NF, León IR, Perales J, Pereira MH, Oliveira G, Corrêa-Oliveira R, Reis AB (2007) Antibodies from dogs with canine visceral leishmaniasis recognise two proteins from the saliva of Lutzomyia longipalpis. Parasitol Res 100:449–454

    Article  PubMed  Google Scholar 

  • Boccalatte FE, Voena C, Riganti C, Bosia A, D'Amico L, Riera L, Cheng M, Ruggeri B, Jensen ON, Goss VL, Lee K, Nardone J, Rush J, Polakiewicz RD, Comb MJ, Chiarle R, Inghirami G (2009) The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase is enhanced by NPM-ALK: new insights in ALK-mediated pathogenesis and the treatment of ALCL. Blood 113:2776–2790

    Article  PubMed  CAS  Google Scholar 

  • Calvo E, Anderson J, Francischetti IM, de L Capurro M, de Bianchi AG, James AA, Ribeiro JMC, Marinotti O (2004) The transcriptome of adult female Anopheles darlingi salivary glands. Insect Mol Biol 13:73–88

    Article  PubMed  CAS  Google Scholar 

  • Calvo E, Mans BJ, Andersen JF, Ribeiro JM (2006) Function and evolution of a mosquito salivary protein family. J Biol Chem 281:1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Cázares-Raga FE, González-Lázaro M, Montero-Solís C, González-Cerón L, Zamudio F, Martínez-Barnetche J, Torres-Monzón JA, Ovilla-Muñoz M, Aguilar-Fuentes J, Rodríguez MH, de la Cruz Hernández-Hernández F (2007) GP35 ANOAL, an abundant acidic glycoprotein of female Anopheles albimanus saliva. Insect Mol Biol 16:187–198

    Article  PubMed  Google Scholar 

  • Champagne DE, Smartt CT, Ribeiro JM, James AA (1995) The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5'-nucleotidase family. Proc Natl Acad Sci U S A 92:694–698

    Article  PubMed  CAS  Google Scholar 

  • Choochote W, Sucharit S, Abeywickreme W (1983) Experiments in crossing two strains of Anopheles barbirostris Van der Wulp 1884 (Diptera: Culicidae) in Thailand. Southeast Asian J Trop Med Public Health 14:204–209

    PubMed  CAS  Google Scholar 

  • Choumet V, Carmi-Leroy A, Laurent C, Lenormand P, Rousselle JC, Namane A, Roth C, Brey PT (2007) The salivary glands and saliva of Anopheles gambiae as an essential step in the Plasmodium life cycle: a global proteomic study. Proteomics 7:3384–3394

    Article  PubMed  CAS  Google Scholar 

  • Clements AN (1992) Biology of mosquitoes: development, nutrition and reproduction. Chapman and Hall, London, p 536

    Google Scholar 

  • Das S, Radtke A, Choi YJ, Mendes AM, Valenzuela JG, Dimopoulos G (2010) Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding. BMC Genomics 11:566

    Article  PubMed  Google Scholar 

  • Dong F, Fu Y, Li X, Jiang J, Sun J, Cheng X (2012) Cloning, expression, and characterization of salivary apyrase from Aedes albopictus. Parasitol Res 110:931–937

    Article  PubMed  Google Scholar 

  • Drame PM, Poinsignon A, Besnard P, Cornelie S, Le Mire J, Toto JC, Foumane V, Dos-Santos MA, Sembène M, Fortes F, Simondon F, Carnevale P, Remoue F (2010) Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control. PLoS One 5:e15596

    Article  PubMed  CAS  Google Scholar 

  • Geng YJ, Gao ST, Huang DN, Zhao YR, Liu JP, Li XH, Zhang RL (2009) Differentially expressed genes between female and male adult Anopheles anthropophagus. Parasitol Res 105:843–851

    Article  PubMed  Google Scholar 

  • Ghosh A, Edwards MJ, Jacobs-Lorena M (2000) The journey of the malaria parasite in the mosquito: hopes for the new century. Parasitol Today 16:196–201

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Kyushiki H, Nagano K, Sudo T, Matsuoka H, Yoshida S (2012) Anopheline anti-platelet protein from a malaria vector mosquito has anti-thrombotic effects in vivo without compromising hemostasis. Thromb Res 129:169–175

    Article  PubMed  CAS  Google Scholar 

  • Isawa H, Orito Y, Iwanaga S, Jingushi N, Morita A, Chinzei Y, Yuda M (2007) Identification and characterization of a new kallikrein–kinin system inhibitor from the salivary glands of the malaria vector mosquito Anopheles stephensi. Insect Biochem Mol Biol 37:466–477

    Article  PubMed  CAS  Google Scholar 

  • James AA (2003) Blocking malaria parasite invasion of mosquito salivary glands. J Exp Biol 206:3817–3821

    Article  PubMed  Google Scholar 

  • James AA, Blackmer K, Marinotti O, Ghosn CR, Racioppi JV (1991) Isolation and characterization of the gene expressing the major salivary gland protein of the female mosquito, Aedes aegypti. Mol Biochem Parasitol 44:245–253

    Article  PubMed  CAS  Google Scholar 

  • Jaresitthikunchai J, Phaonakrop N, Kittisenachai S, Roytrakul S (2009) Rapid in-gel digestion protocol for protein identification by peptide mass fingerprint. In: Proceeding of the 2nd biochemistry and molecular biology conference: biochemistry and molecular biology for regional sustainable development. Khon Kaen, Thailand, p 29

    Google Scholar 

  • Jariyapan N, Choochote W, Jitpakdi A, Harnnoi T, Siriyasatein P, Wilkinson MC, Bates PA (2006) A glycine- and glutamate-rich protein is female salivary gland-specific and abundant in the malaria vector Anopheles dirus B (Diptera: Culicidae). J Med Entomol 43:867–874

    Article  PubMed  CAS  Google Scholar 

  • Jariyapan N, Choochote W, Jitpakdi A, Harnnoi T, Siriyasatein P, Wilkinson M, Junkum A, Bates PA (2007) Salivary gland proteins of the human malaria vector, Anopheles dirus B (Diptera: Culicidae). Rev Inst Med Trop Sao Paulo 49:5–10

    Article  PubMed  Google Scholar 

  • Jariyapan N, Baimai V, Poovorawan Y, Roytrakul S, Saeung A, Thongsahuan S, Suwannamit S, Otsuka Y, Choochote W (2010) Analysis of female salivary gland proteins of the Anopheles barbirostris complex (Diptera: Culicidae) in Thailand. Parasitol Res 107:509–516

    Article  PubMed  Google Scholar 

  • Juhn J, Naeem-Ullah U, Maciel Guedes BA, Majid A, Coleman J, Paolucci Pimenta PF, Akram W, James AA, Marinotti O (2011) Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito. Aedes aegypti. Parasit Vectors 4:1

    Article  PubMed  CAS  Google Scholar 

  • Kalume DE, Okulate M, Zhong J, Reddy R, Suresh S, Deshpande N, Kumar N, Pandey A (2005) A proteomic analysis of salivary glands of female Anopheles gambiae mosquito. Proteomics 5:3765–3777

    Article  PubMed  CAS  Google Scholar 

  • Khaitlina SY (2001) Functional specificity of actin isoforms. Int Rev Cytol 202:35–98

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Choochote W, Jitpakdi A, Junkum A, Park SJ, Min GS (2003) Establishment of a self-mating mosquito colony of Anopheles sinensis from Korea. Korean J Entomol 33:267–271

    Article  Google Scholar 

  • Lanfrancotti A, Lombardo F, Santolamazza F, Veneri M, Castrignamo T, Coluzzi M, Arca B (2002) Novel cDNAs encoding salivary proteins from the malaria vector Anopheles gambiae. FEBS Lett 517:67–71

    Article  PubMed  CAS  Google Scholar 

  • Lombardo F, Ronca R, Rizzo C, Mestres-Simon M, Lanfrancotti A, Curra C, Fiorentino G, Bourgouin C, Ribeiro JMC, Petrarca V, Ponzi M, Coluzzi M, Arca B (2009) The Anopheles gambiae salivary gland protein gSG6: an anopheline-specific protein with a blood-feeding role. Insect Biochem Mol Biol 39:457–466

    Article  PubMed  CAS  Google Scholar 

  • Marinotti O, Brito M, Moreira CK (1996) Apyrase and alpha-glucosidase in the salivary glands of Aedes albopictus. Comp Biochem Physiol 113B:675–679

    CAS  Google Scholar 

  • Montero-Solis C, Gonzalez-Ceron L, Rodriguez MH, Cirerol BE, Zamudio F, Possanni LD, James AA, de la Cruz Hernandez-Hernandez F (2004) Identification and characterization of gp65, a salivary-gland-specific molecule expressed in the malaria vector Anopheles albimanus. Insect Mol Biol 13:155–164

    Article  PubMed  CAS  Google Scholar 

  • Moreira-Ferro CK, Marinotti O, Bijovsky AT (1999) Morphological and biochemical analyses of the salivary glands of the malaria vector, Anopheles darlingi. Tissue Cell 31:264–273

    Article  PubMed  CAS  Google Scholar 

  • Moreira CK, Marrelli MT, Lima SL, Marinotti O (2001) Analysis of salivary gland proteins of the mosquito Anopheles darlingi (Diptera: Culicidae). J Med Entomol 38:763–767

    Article  PubMed  CAS  Google Scholar 

  • Nabby-Hansen S, Waterfield MD, Cramer R (2001) Proteomics-post-genomic cartography to understand gene function. Trends Pharmacol Sci 22:376–384

    Article  Google Scholar 

  • Nascimento EP, dos Santos MR, Marinotti O (2000) Salivary gland proteins of the mosquito Culex quinquefasciatus. Arch Insect Biochem Physiol 43:9–15

    Article  PubMed  CAS  Google Scholar 

  • Niedzwiecki A, Kongpachith AM, Fleming JE (1991) Aging affects expression of 70-kDa heat shock proteins in Drosophila. J Biol Chem 266:9332–9338

    PubMed  CAS  Google Scholar 

  • Packham MA, Mustard JF (2005) Platelet aggregation and adenosine diphosphate/adenosine triphosphate receptors: a historical perspective. Semin Thromb Hemost 31:129–138

    Article  PubMed  CAS  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Pimenta PF, Touray M, Miller L (1994) The journey of malaria sporozoites in the mosquito salivary gland. J Eukaryot Microbiol 41:608–624

    Article  PubMed  CAS  Google Scholar 

  • Poehling HM (1979) Distribution of specific proteins in the salivary gland lobes of culicidae and their relation to age and blood sucking. J Insect Physiol 25:3–8

    Article  CAS  Google Scholar 

  • Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, Cisse B, Sokhna C, Arca B, Simondon F, Remoue F (2008) Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS One 3:e2472

    Article  PubMed  Google Scholar 

  • Racioppi JV, Spielman A (1987) Secretory proteins from the salivary glands of adult Aedes aegypti mosquitoes. Insect Biochem 17:503–511

    Article  CAS  Google Scholar 

  • Rayl EA, Moroson BA, Beardsley GP (1996) The human purH gene product, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase. Cloning, sequencing, expression, purification, kinetic analysis, and domain mapping. J Biol Chem 271:2225–2233

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JM, Arca B, Lombardo F, Calvo E, Pham VM, Chandra PK, Wikel SK (2007) An annotated catalogue of salivary gland transcripts in the adult female mosquito. Aedes aegypti. BMC Genomics 8:6

    Article  PubMed  Google Scholar 

  • Ribeiro JMC, Francischetti IM (2003) Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48:73–88

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JM, Mans BJ, Arca B (2010) An insight into the sialome of blood-feeding Nematocera. Insect Biochem Mol Biol 40:767–784

    Article  PubMed  CAS  Google Scholar 

  • Rossignol PA, Ribeiro JM, Spielman A (1984) Increased intradermal probing time in sporozoite-infected mosquitoes. AmJTrop Med Hyg 33:17–20

    CAS  Google Scholar 

  • Saeung A, Baimai V, Otsuka Y, Rattanarithikul R, Somboon P, Junkum A, Tuetun B, Takaoka H, Choochote W (2008) Molecular and cytogenetic evidence of three sibling species of the Anopheles barbirostris form A (Diptera: Culicidae) in Thailand. Parasitol Res 102:499–507

    Article  PubMed  Google Scholar 

  • Simons FE, Peng Z (2001) Mosquito allergy: recombinant mosquito salivary antigens for new diagnostic tests. Int Arch Allergy Immunol 124:403–405

    Article  PubMed  CAS  Google Scholar 

  • Smartt CT, Kim AP, Grossman GL, James AA (1995) The Apyrase gene of the vector mosquito, Aedes aegypti, is expressed specifically in the adult female salivary glands. Exp Parasitol 81:239–248

    Article  PubMed  CAS  Google Scholar 

  • Sun D, McNicol A, James AA, Peng Z (2006) Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor. Platelets 17:178–184

    Article  PubMed  CAS  Google Scholar 

  • Suwan N, Wilkinson MC, Crampton JM, Bates PA (2002) Expression of D7 and D7-related proteins in the salivary glands of the human malaria mosquito Anopheles stephensi. Insect Mol Biol 11:223–232

    Article  PubMed  CAS  Google Scholar 

  • Thangamani S, Wikel SK (2009) Differential expression of Aedes aegypti salivary transcriptome upon blood feeding. Parasit Vectors 2:34

    Article  PubMed  Google Scholar 

  • Thongsahuan S, Baimai V, Junkum A, Saeung A, Min GS, Joshi D, Park MH, Somboon P, Suwonkerd W, Tippawangkosol P, Jariyapan N, Choochote W (2011) Susceptibility of Anopheles campestris-like and Anopheles barbirostris species complexes to Plasmodium falciparum and Plasmodium vivax in Thailand. Mem Inst Oswaldo Cruz 106:105–112

    Article  PubMed  Google Scholar 

  • Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM (2002) Exploring the sialome of the tick Ixodes scapularis. J Exp Biol 205:2843–2864

    PubMed  CAS  Google Scholar 

  • Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Ribeiro JMC (2003) Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem Mol Biol 33:717–732

    Article  PubMed  CAS  Google Scholar 

  • Wang MH, Marinotti O, James AA, Walker E, Githure J, Yan G (2010) Genome-wide patterns of gene expression during aging in the African malaria vector Anopheles gambiae. PLoS One 5:e13359

    Article  PubMed  Google Scholar 

  • Wasinpiyamongkol L, Patramool S, Luplertlop N, Surasombatpattana P, Doucoure S, Mouchet F, Séveno M, Remoue F, Demettre E, Brizard JP, Jouin P, Biron DG, Thomas F, Missé D (2010) Blood-feeding and immunogenic Aedes aegypti saliva proteins. Proteomics 10:1906–1916

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Peng Z, Simons FER (1998) Isolation of a cDNA encoding Aed a 3, a 30 kDa IgE-binding protein of mosquito Aedes aegypti saliva. J Allergy Clin Immunol 101:S203

    Google Scholar 

  • Yoshida S, Sudo T, Niimi M, Tao L, Sun B, Kambayashi J, Watanabe H, Luo E, Matsuoka H (2008) Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito. Blood 111:2007–2014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Research Fund (RMU5180011 to NJ) and the Thailand Research Fund through the Royal Golden Jubilee Ph.D. program (PHD/0149/2551).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narissara Jariyapan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jariyapan, N., Roytrakul, S., Paemanee, A. et al. Proteomic analysis of salivary glands of female Anopheles barbirostris species A2 (Diptera: Culicidae) by two-dimensional gel electrophoresis and mass spectrometry. Parasitol Res 111, 1239–1249 (2012). https://doi.org/10.1007/s00436-012-2958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-2958-y

Keywords

Navigation