Skip to main content
Log in

The complete mitochondrial genome of the rodent intra-arterial nematodes Angiostrongylus cantonensis and Angiostrongylus costaricensis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The two rodent intra-arterial nematodes, Angiostrongylus cantonensis and Angiostrongylus costaricensis, can cause human ill-health. The present study aimed to characterize and compare the mitochondrial (mt) genomes of these two species, and clarify their phylogenetic relationship and the position in the phylum Nematoda. The complete mt genomes of A. cantonensis and A. costaricensis are 13,497 and 13,585 bp in length, respectively. Hence, they are the smallest in the class of Chromadorea characterized thus far. Like many nematode species in the class of Chromadorea, they encode 12 proteins, 22 transfer RNAs, and two ribosomal RNAs. All genes are located on the same strand. Nucleotide identity of the two mt genomes is 81.6%, ranging from 77.7% to 87.1% in individual gene pairs. Our mt genome-wide analysis identified three major gene arrangement patterns (II-1, II-2, and II-3) from 48 nematode mt genomes. Both patterns II-1 and II-2 are distinct from pattern II-3, which covers the Spirurida, supporting a closer relationship between Ascaridida and Strongylida rather than Spirurida. Thymine (T) was highly concentrated on coding strands in Chromadorea, but balanced between the two strands in Enoplea, probably due to the gene arrangement pattern. Interestingly, the gene arrangement pattern of mt genomes and phylogenetic analysis based on concatenated amino acids indicated a closer relationship between the order Ascaridida and Rhabditida rather than Spirurida as indicated in previous studies. These discrepancies call for new research, reassessing the position of the order of Ascaridida in the phylogenetic tree. Once consolidated, the findings are important for population genetic studies and target identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RC (2000) Nematode parasites of vertebrates: their development and transmission. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Barrett JL, Carlisle MS, Prociv P (2002) Neuro-angiostrongylosis in wild black and grey-headed flying foxes (Pteropus spp.). Aust Vet J 80:554–558

    Article  PubMed  CAS  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  PubMed  CAS  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  PubMed  CAS  Google Scholar 

  • Blouin MS, Yowell CA, Courtney CH, Dame JB (1998) Substitution bias, rapid saturation, and the use of mtDNA for nematode systematics. Mol Biol Evol 15:1719–1727

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  PubMed  CAS  Google Scholar 

  • De Rijk P, De Wachter R (1997) RnaViz, a program for the visualisation of RNA secondary structure. Nucleic Acids Res 25:4679–4684

    Article  PubMed  Google Scholar 

  • Duffy MS, Miller CL, Kinsella JM, de Lahunta A (2004) Parastrongylus cantonensis in a nonhuman primate, Florida. Emerg Infect Dis 10:2207–2210

    Article  PubMed  Google Scholar 

  • Gasser RB, Chilton NB, Hoste H, Beveridge I (1993) Rapid sequencing of rDNA from single worms and eggs of parasitic helminths. Nucleic Acids Res 21:2525–2526

    Article  PubMed  CAS  Google Scholar 

  • Geiger SM, Graeff-Teixeira C, Soboslay PT, Schulz-Key H (1999) Experimental Angiostrongylus costaricensis infection in mice: immunoglobulin isotype responses and parasite-specific antigen recognition after primary low-dose infection. Parasitol Res 85:200–205

    Article  PubMed  CAS  Google Scholar 

  • Gelis S, Spratt DM, Raidal SR (2011) Neuroangiostrongyliasis and other parasites in tawny frogmouths (Podargus strigoides) in south-eastern Queensland. Aust Vet J 89:47–50

    Article  PubMed  CAS  Google Scholar 

  • Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301–320

    Article  PubMed  CAS  Google Scholar 

  • He Y, Jones J, Armstrong M, Lamberti F, Moens M (2005) The mitochondrial genome of Xiphinema americanum sensu stricto (Nematoda: Enoplea): considerable economization in the length and structural features of encoded genes. J Mol Evol 61:819–833

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Chilton NB, Gasser RB (2002) The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int J Parasitol 32:145–158

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Chilton NB, Abs El-Osta YG, Gasser RB (2003a) Comparative analysis of mitochondrial genome data for Necator americanus from two endemic regions reveals substantial genetic variation. Int J Parasitol 33:955–963

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Chilton NB, Gasser RB (2003b) The mitochondrial genome of Strongyloides stercoralis (Nematoda)-idiosyncratic gene order and evolutionary implications. Int J Parasitol 33:1393–1408

    Article  PubMed  CAS  Google Scholar 

  • Intapan PM, Maleewong W, Sawanyawisuth K, Chotmongkol V (2003) Evaluation of human IgG subclass antibodies in the serodiagnosis of angiostrongyliasis. Parasitol Res 89:425–429

    PubMed  Google Scholar 

  • Jex AR, Waeschenbach A, Hu M, van Wyk JA, Beveridge I, Littlewood DT, Gasser RB (2009) The mitochondrial genomes of Ancylostoma caninum and Bunostomum phlebotomum—two hookworms of animal health and zoonotic importance. BMC Genomics 10:79

    Article  PubMed  Google Scholar 

  • Jex AR, Hall RS, Timothy D, Littlewood J, Gasser RB (2010) An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. Nucleic Acids Res 38:522–533

    Article  PubMed  CAS  Google Scholar 

  • Kang S, Sultana T, Eom KS, Park YC, Soonthornpong N, Nadler SA, Park JK (2009) The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)—an idiosyncratic gene order and phylogenetic information for chromadorean nematodes. Gene 429:87–97

    Article  PubMed  CAS  Google Scholar 

  • Kim DY, Stewart TB, Bauer RW, Mitchell M (2002) Parastrongylus (=Angiostrongylus) cantonensis now endemic in Louisiana wildlife. J Parasitol 88:1024–1026

    PubMed  CAS  Google Scholar 

  • Kim KH, Eom KS, Park JK (2006) The complete mitochondrial genome of Anisakis simplex (Ascaridida: Nematoda) and phylogenetic implications. Int J Parasitol 36:319–328

    Article  PubMed  CAS  Google Scholar 

  • Kliks MM, Palumbo NE (1992) Eosinophilic meningitis beyond the Pacific Basin: the global dispersal of a peridomestic zoonosis caused by Angiostrongylus cantonensis, the nematode lungworm of rats. Soc Sci Med 34:199–212

    Article  PubMed  CAS  Google Scholar 

  • Kramer MH, Greer GJ, Quinonez JF, Padilla NR, Hernandez B, Arana BA, Lorenzana R, Morera P, Hightower AW, Eberhard ML, Herwaldt BL (1998) First reported outbreak of abdominal angiostrongyliasis. Clin Infect Dis 26:365–372

    Article  PubMed  CAS  Google Scholar 

  • Lavrov DV, Brown WM (2001) Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has a gene arrangement relatable to those of coelomate metazoans. Genetics 157:621–637

    PubMed  CAS  Google Scholar 

  • Li MW, Lin RQ, Song HQ, Wu XY, Zhu XQ (2008) The complete mitochondrial genomes for three Toxocara species of human and animal health significance. BMC Genomics 9:224

    Article  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    PubMed  CAS  Google Scholar 

  • Lv S, Zhang Y, Steinmann P, Zhou XN (2008) Emerging angiostrongyliasis in mainland China. Emerg Infect Dis 14:161–164

    Article  PubMed  Google Scholar 

  • Lv S, Zhang Y, Liu HX, Hu L, Yang K, Steinmann P, Chen Z, Wang LY, Utzinger J, Zhou XN (2009a) Invasive snails and an emerging infectious disease: results from the first national survey on Angiostrongylus cantonensis in China. PLoS Negl Trop Dis 3:e368

    Article  PubMed  Google Scholar 

  • Lv S, Zhang Y, Liu HX, Zhang CW, Steinmann P, Zhou XN, Utzinger J (2009b) Angiostrongylus cantonensis: morphological and behavioral investigation within the freshwater snail Pomacea canaliculata. Parasitol Res 104:1351–1359

    Article  PubMed  Google Scholar 

  • Lv S, Zhang Y, Steinmann P, Zhou XN, Utzinger J (2010) Helminth infections of the central nervous system occurring in Southeast Asia and the Far East. Adv Parasitol 72:351–408

    Article  PubMed  Google Scholar 

  • Meldal BH, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJ (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogenet Evol 42:622–636

    Article  PubMed  CAS  Google Scholar 

  • Miller CL, Kinsella JM, Garner MM, Evans S, Gullett PA, Schmidt RE (2006) Endemic infections of Parastrongylus (=Angiostrongylus) costaricensis in two species of nonhuman primates, raccoons, and an opossum from Miami, Florida. J Parasitol 92:406–408

    Article  PubMed  Google Scholar 

  • Molnar RI, Bartelmes G, Dinkelacker I, Witte H, Sommer RJ (2011) Mutation rates and intra-specific divergence of the mitochondrial genome of Pristionchus pacificus. Mol Biol Evol 28:2317–2326

    Article  Google Scholar 

  • Monks DJ, Carlisle MS, Carrigan M, Rose K, Spratt D, Gallagher A, Prociv P (2005) Angiostrongylus cantonensis as a cause of cerebrospinal disease in a yellow-tailed black cockatoo (Calyptorhynchus funereus) and two tawny frogmouths (Podargus strigoides). J Avian Med Surg 19:289–293

    Article  Google Scholar 

  • Montiel R, Lucena MA, Medeiros J, Simoes N (2006) The complete mitochondrial genome of the entomopathogenic nematode Steinernema carpocapsae: insights into nematode mitochondrial DNA evolution and phylogeny. J Mol Evol 62:211–225

    Article  PubMed  CAS  Google Scholar 

  • Morley NJ (2006) Aquatic molluscs as auxiliary hosts for terrestrial nematode parasites: implications for pathogen transmission in a changing climate. Parasitology 137:1041–1056

    Article  Google Scholar 

  • Nadler SA, Hudspeth DSS (2000) Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol 86:380–393

    PubMed  CAS  Google Scholar 

  • Prociv P, Spratt DM, Carlisle MS (2000) Neuro-angiostrongyliasis: unresolved issues. Int J Parasitol 30:1295–1303

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Shaw KL (2002) Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proc Natl Acad Sci U S A 99:16122–16127

    Article  PubMed  CAS  Google Scholar 

  • Wang QP, Lai DH, Zhu XQ, Chen XG, Lun ZR (2008) Human angiostrongyliasis. Lancet Infect Dis 8:621–630

    Article  PubMed  Google Scholar 

  • Yousif F, Lammler G (1975) The suitability of several aquatic snails as intermediate hosts for Angiostrongylus cantonensis. Parasitol Res 47:203–210

    CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the International Society for Infectious Diseases (2007). SL is the recipient of a Ph.D. fellowship from the “Stipendienkommission für Nachwuchskräfte aus Entwicklungsländern” from the Canton of Basel-Stadt, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Lv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, S., Zhang, Y., Zhang, L. et al. The complete mitochondrial genome of the rodent intra-arterial nematodes Angiostrongylus cantonensis and Angiostrongylus costaricensis . Parasitol Res 111, 115–123 (2012). https://doi.org/10.1007/s00436-011-2807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2807-4

Keywords

Navigation