Skip to main content

Advertisement

Log in

Anti-Giardia activity of phenolic-rich essential oils: effects of Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris, and Lippia graveolens on trophozoites growth, viability, adherence, and ultrastructure

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present work evaluates the anti-Giardia activity of phenolic-rich essential oils obtained from Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris chemotype thymol, and Lippia graveolens aromatic plants. The effects were evaluated on parasite growth, cell viability adherence, and morphology. The tested essential oils inhibited the growth of Giardia lamblia. T. capitata essential oil is the most active followed by O. virens, T. zygis subsp. sylvestris, and L. graveolens oils. The tested essential oils at IC50 (71–257) μg/ml inhibited parasite adherence (p < 0.001) since the first hour of incubation and were able to kill almost 50% of the parasites population in a time-dependent manner. The main ultrastructural alterations promoted by essential oils were deformations in typical trophozoite appearance, often roundly shape, irregular dorsal and ventral surface, presence of membrane blebs, electrodense precipitates in cytoplasm and nuclei, and internalization of flagella and ventral disc. Our data suggest that essential oils induced cell death probably by processes associated to the loss of osmoregulation caused by plasmatic membrane alterations. Experiments revealed that the essential oils did not present cytotoxic effects in mammalian cells. In conclusion, T. capitata, O. virens, T. zygis subsp. sylvestris chemotype thymol, and L. graveolens essential oils have antigiardial activity in vitro and seem to have potential for the treatment of the parasitic disease caused by the protozoan G. lamblia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abodeely M, DuBois KN, Hehl A et al (2009) A contiguous compartment functions as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8:1665–1676

    Article  CAS  PubMed  Google Scholar 

  • Abonyi A (1995) Examination of nonflagellate and flagellate round forms of Trichomonas vaginalis by transmission electron microscopy. Appl Parasitol 36:303–310

    CAS  PubMed  Google Scholar 

  • Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14:447–475

    Article  CAS  PubMed  Google Scholar 

  • Adams RP (1995) Identification of essential oils components by gas chromatography/mass spectroscopy. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Barbosa E, Calzada F, Campos R (2007) In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. J Ethnopharmacol 109:552–554

    Article  CAS  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94:223–253

    Article  CAS  PubMed  Google Scholar 

  • Busatti HG, Vieira AE, Viana JC et al (2007) Effect of metronidazole analogues on Giardia lamblia cultures. Parasitol Res 102:145–149

    Article  PubMed  Google Scholar 

  • Calzada F, Yepez-Mulia L, Aguilar A (2006) In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J Ethnopharmacol 108:367–370

    Article  PubMed  Google Scholar 

  • Council of Europe (1997) European Pharmacopoeia. Europe Co., Strasbourg

    Google Scholar 

  • Cristani M, D'Arrigo M, Mandalari G et al (2007) Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agric Food Chem 55:6300–6308

    Article  CAS  PubMed  Google Scholar 

  • Custodio JB, Moreno AJ, Wallace KB (1998) Tamoxifen inhibits induction of the mitochondrial permeability transition by Ca2+ and inorganic phosphate. Toxicol Appl Pharmacol 152:10–17

    Article  CAS  PubMed  Google Scholar 

  • de Almeida I, Alviano DS, Vieira DP et al (2007) Antigiardial activity of Ocimum basilicum essential oil. Parasitol Res 101:443–452

    Article  PubMed  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277

    Article  CAS  PubMed  Google Scholar 

  • Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  PubMed  Google Scholar 

  • Eckmann L (2003) Mucosal defences against Giardia. Parasite Immunol 25:259–270

    Article  CAS  PubMed  Google Scholar 

  • Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669

    Article  CAS  PubMed  Google Scholar 

  • Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323

    Article  CAS  PubMed  Google Scholar 

  • Elmendorf HG, Dawson SC, McCaffery JM (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33:3–28

    Article  PubMed  Google Scholar 

  • Faleiro L, Miguel G, Gomes S et al (2005) Antibacterial and antioxidant activities of essential oils isolated from Thymbra capitata L. (Cav.) and Origanum vulgare L. J Agric Food Chem 53:8162–8168

    Article  CAS  PubMed  Google Scholar 

  • Flanagan PA (1992) Giardia—diagnosis, clinical course and epidemiology. A review. Epidemiol Infect 109:1–22

    CAS  PubMed  Google Scholar 

  • Fraser D, Bilenko N, Deckelbaum RJ et al (2000) Giardia lamblia carriage in Israeli Bedouin infants: risk factors and consequences. Clin Infect Dis 30:419–424

    Article  CAS  PubMed  Google Scholar 

  • Gadelha AP, Vidal F, Castro TM et al (2005) Susceptibility of Giardia lamblia to Hovenia dulcis extracts. Parasitol Res 97:399–407

    Article  CAS  PubMed  Google Scholar 

  • Gardner TB, Hill DR (2001) Treatment of giardiasis. Clin Microbiol Rev 14:114–128

    Article  CAS  PubMed  Google Scholar 

  • Gillin FD, Reiner DS (1982) Attachment of the flagellate Giardia lamblia: role of reducing agents, serum, temperature, and ionic composition. Mol Cell Biol 2:369–377

    CAS  PubMed  Google Scholar 

  • Gonçalves MJ, Vicente AM, Cavaleiro C et al (2007) Composition and antifungal activity of the essential oil of Mentha cervina from Portugal. Nat Prod Res 21:867–871

    Article  PubMed  Google Scholar 

  • Hansen WR, Tulyathan O, Dawson SC et al (2006) Giardia lamblia attachment force is insensitive to surface treatments. Eukaryot Cell 5:781–783

    Article  CAS  PubMed  Google Scholar 

  • Harris JC, Plummer S, Turner MP et al (2000) The microaerophilic flagellate Giardia intestinalis: Allium sativum (garlic) is an effective antigiardial. Microbiology 146:3119–3127

    CAS  PubMed  Google Scholar 

  • Hill DR, Pohl R, Pearson RD (1986) Giardia lamblia: a culture method for determining parasite viability. Am J Trop Med Hyg 35:1129–1133

    CAS  PubMed  Google Scholar 

  • Holberton DV (1973) Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris. J Cell Sci 13:11–41

    CAS  PubMed  Google Scholar 

  • Holberton DV (1974) Attachment of Giardia—a hydrodynamic model based on flagellar activity. J Exp Biol 60:207–221

    CAS  PubMed  Google Scholar 

  • Joulain D, König W (1998) The atlas of spectral data of sesquiterpene hydrocarbons. E. B., Hamburg

    Google Scholar 

  • Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488

    Article  CAS  PubMed  Google Scholar 

  • Lanfredi-Rangel A, Attias M, de Carvalho TM et al (1998) The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia may correspond to early and late endosomes and to lysosomes. Struct Biol 123:225–235

    Article  CAS  Google Scholar 

  • Machado M, Sousa MC, Salgueiro L et al (2010) Effects of essential oils on the growth of Giardia lamblia trophozoites. Nat Prod Commun 5:137–141

    CAS  PubMed  Google Scholar 

  • Moon T, Wilkinson JM, Cavanagh HM (2006) Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol Res 99:722–728

    Article  PubMed  Google Scholar 

  • Niven GW, Miles CA, Mackey BM (1999) The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: and in vivo study using differential scanning calorimetry. Microbiology 145:419–425

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Schofield PJ, Edwards MR (1997) Giardia intestinalis: volume recovery in response to cell swelling. Exp Parasitol 86:19–28

    Article  CAS  PubMed  Google Scholar 

  • Perez-Arriaga L, Mendoza-Magana ML, Cortes-Zarate R et al (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 98:152–161

    Article  CAS  PubMed  Google Scholar 

  • Ponce-Macotela M, Rufino-Gonzalez Y, Gonzalez-Maciel A et al (2006) Oregano (Lippia spp.) kills Giardia intestinalis trophozoites in vitro: antigiardiasic activity and ultrastructural damage. Parasitol Res 98:557–560

    Article  PubMed  Google Scholar 

  • Santoro GF, das Gracas Cardoso M et al (2007) Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitol Res 100:783–790

    Article  PubMed  Google Scholar 

  • Sawangjaroen N, Subhadhirasakul S, Phongpaichit S et al (2005) The in vitro anti-giardial activity of extracts from plants that are used for self-medication by AIDS patients in southern Thailand. Parasitol Res 95:17–21

    Article  CAS  PubMed  Google Scholar 

  • Silva MT, Appelberg R, Silva MN et al (1987) In vivo killing and degradation of Mycobacterium aurum within mouse peritoneal macrophages. Infect Immun 55:2006–2016

    CAS  PubMed  Google Scholar 

  • Sousa MC, Poiares-Da-Silva J (1999) A new method for assessing metronidazole susceptibility of Giardia lamblia trophozoites. Antimicrob Agents Chemother 43:2939–2942

    CAS  PubMed  Google Scholar 

  • Sousa MC, Goncalves CA, Bairos VA et al (2001) Adherence of Giardia lamblia trophozoites to Int-407 human intestinal cells. Clin Diagn Lab Immunol 8:258–265

    CAS  PubMed  Google Scholar 

  • Thompson RC (2000) Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int J Parasitol 30:1259–1267

    Article  CAS  PubMed  Google Scholar 

  • Upcroft P, Upcroft JA (2001) Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev 14:150–164

    Article  CAS  PubMed  Google Scholar 

  • Vidal F, Vidal JC, Gadelha AP et al (2007) Giardia lamblia: the effects of extracts and fractions from Mentha x piperita Lin. (Lamiaceae) on trophozoites. Exp Parasitol 115:25–31

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. Jorge Paiva for help in plant taxonomic.

Funding

This work was supported by “Programa Operacional Ciência e Inovacão 2010 (POCI)/FEDER” da Fundação para a Ciência e Tecnologia.

Transparency declarations

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria do Céu Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, M., Dinis, A.M., Salgueiro, L. et al. Anti-Giardia activity of phenolic-rich essential oils: effects of Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris, and Lippia graveolens on trophozoites growth, viability, adherence, and ultrastructure. Parasitol Res 106, 1205–1215 (2010). https://doi.org/10.1007/s00436-010-1800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1800-7

Keywords

Navigation