Skip to main content
Log in

Phylogenetic analysis of microsatellite markers further supports the two hybridization events hypothesis as the origin of the Trypanosoma cruzi lineages

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

To better understand the evolution of the etiologic agent of Chagas disease, we cloned and sequenced 25 alleles from five Tripanosoma cruzi microsatellite markers. The study of the sequences showed highly conserved alleles present in T. cruzi clones belonging to TCI, TCIIc, and TCIIe. This result was also confirmed by the phylogenetic analysis of MCLE01 allele sequences. The examination by capillary electrophoresis of six microsatellite markers from 19 T. cruzi clones showed a high proportion of the alleles found both in the TCI and TCII sublineages. The phylogenetic reconstruction of these 19 clones produced a tree with two major clusters with bootstrap support of 100% and 95%. The first cluster includes T. cruzi clones belonging to the TCI and TCIIa lineages. The second cluster is composed of TCI, TCIIc, TCIId, and TCIIe T. cruzi clones. The analysis of five microsatellite markers in the CLBrener genome showed that almost all the microsatellite markers are synteny; non-Esmeraldo and Esmeraldo haplotypes probably come from the TCIIc and TCIIb lineages. Taken together, our results are in agreement with the two hybridization events hypothesis as the origin of current T. cruzi lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayala FJ (1993) Trypanosoma and Leishmania have clonal population structures of epidemiological significance. Biol Res 26:47–63

    CAS  PubMed  Google Scholar 

  • Barnabé C, Brisse S, Tibayrenc M (2000) Population structure and genetic typing of Trypanosoma cruzi, the agent of Chagas’ disease: a multilocus enzyme electrophoresis approach. Parasitology 120:513–526

    Article  PubMed  Google Scholar 

  • Bogliolo AR, Lauria-Pires L, Gibson WC (1996) Polymorphisms in Trypanosoma cruzi: evidence of genetic recombination. Acta Tropica 61:31–40

    Article  CAS  PubMed  Google Scholar 

  • Brener Z (1987) Pathogenesis and immunopathology of chronic Chagas disease. Mem Inst Oswaldo Cruz 82:205–212

    Article  Google Scholar 

  • Brisse S, Barnabé C, Bañuls A-L, Sidibé I, Noel S, Tibayrenc M (1998) A phylogenetic analysis of the Trypanosoma cruzi genome project CL Brener reference strain by multilocus enzyme electrophoresis and multiprimer random amplified polymorphic DNA fingerprinting. Mol Biochem Parasitol 92:253–263

    Article  CAS  PubMed  Google Scholar 

  • Brisse S, Barnabé C Tibayrenc M (2000) Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol 30:34–44

    Article  Google Scholar 

  • Brisse S, Henriksson J, Barnabe C, Douzery EJ, Berkvens D, Serrano M, Carvalho MRC, Buck GA, Dujardin J-C Tibayrenc M (2003) Evidence for genetic exchange and hybridization in Trypanosoma cruzi based on nucleotide sequences and molecular karyotype. Infect Gene Evol 2:173–183

    Article  CAS  Google Scholar 

  • Carrasco HJ, Frame IA, Valente SA, Miles MA (1996) Genetic exchange as a possible source of genomic diversity in sylvatic populations of Trypanosoma cruzi. Am J Trop Med Hyg 54:418–424

    CAS  PubMed  Google Scholar 

  • De Freitas JM, Augusto-Pinto L, Pimental JR, Bastos-Rodrigues L, Vanessa F, Gonçalves VF, Teixeira, SMR, Chiari E, Junqueira ACV, Fernández O, Macedo AM, Machado CR, Pena SDJ (2006) Ancestral genomes, sex, and the population structure of Trypanosoma cruzi. PLoS Pathogens 2:0226–0235 doi:10.1371/journal.ppat.0020024

    Google Scholar 

  • Dvorak JA (1984) The natural heterogeneity of Trypanosoma cruzi: biological and medical implication. J Cell Biochem 24:357–371

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, Da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, Taylor MC, Mena SS, Veazey P, Miles GA, Acosta N, De Arias AR, Miles MA (2003) Mechanism of genetic exchange in American trypanosomes. Nature 421:936–939

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) Bioedit: a user friendly biological sequence alignment edit and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  • Jeanmougins F, Thomson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with clustal X. Trends Biochem Scien 23:403–405

    Article  Google Scholar 

  • Macedo AM, Machado CR, Oliveira RP, Pena SDJ (2004) Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of Chagas disease. Mem Inst Oswaldo Cruz 99:1–12

    Article  CAS  PubMed  Google Scholar 

  • Machado CA, Ayala FJ (2001) Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc Natl Acad Sci U S A 98:7396–7401

    Article  CAS  PubMed  Google Scholar 

  • Momen H (1999) Taxonomy of Trypanosoma cruzi: a commentary on characterisation and nomenclature. Mem Inst Oswaldo Cruz 94:181–184

    Article  PubMed  Google Scholar 

  • Oliveira RP, Broude NE, Macedo AM, Cantor CR, Smith CL, Pena SDJ (1998) Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Proc Natl Acad Sci U S A 95:3776–3780

    Article  CAS  PubMed  Google Scholar 

  • Prata A (2001) Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis 1:92–100

    Article  CAS  PubMed  Google Scholar 

  • Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B (1996) DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 83:141–152

    Article  CAS  PubMed  Google Scholar 

  • Sturm NR, Vargas NS, Westenberger SJ, Zingales B, Campbell DA (2003) Evidence for multiple hybrid groups in Trypanosoma cruzi. Int J Parasitol 33:269–279

    Article  CAS  PubMed  Google Scholar 

  • Tibayrenc M (1998) Integrated genetic epidemiology of Infectious diseases: the Chagas model. Mem Inst Oswaldo Cruz 93:577–580

    Article  CAS  PubMed  Google Scholar 

  • Tibayrenc M (2003) Genetic subdivisions within Trypanosoma cruzi (discrete typing units) and their relevance for molecular epidemiology and experimental evolution. Kinetoplastid Biol Dis 2:12

    Article  PubMed  Google Scholar 

  • Tibayrenc M, Ayala F (1988) Isoenzyme variability of Trypanosoma cruzi, the agent of Chagas’ disease: genetic, taxonomic and epidemiological significance. Evolution 42:277–292

    Article  Google Scholar 

  • Tibayrenc M, Ward P, Moya A, Ayala FJ (1986) Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure. Proc Natl Acad Sci U S A 83:115–119

    Article  CAS  PubMed  Google Scholar 

  • Westenberger SJ, Barnabé C, Campbell DA, Sturm NR (2005) Two hybridization events define the population structure of Trypanosoma cruzi. Genetics 171:527–543

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2002) Control of Chagas disease. Second report of the WHO Expert Committee Strategic Direction for Research. Geneva, Switzerland, pp 1–159.

Download references

Acknowledgments

This study was supported by FONDECYT 1070837. We are grateful to Dr. Christian Barnabé from the Institut de Recherche pour le Developpement, Génétique et Evolution des Maladies Infectieuses, UMR 2724 CNRS/IRD, Montpellier, France, for the kind provision of all T. cruzi clones used in this work. We also thank Leonardo Venegas Hermosilla for excellent technical support in the preparation of all the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Venegas.

Electronic supplementary material

Supplementary data associated with this article can be found in the online version at doi:…Below is the link to the electronic supplementary material.

Fig. S1

Alignments of the SCLE10 microsatellite alleles cloned from the Trypanosoma cruzi clones: CBB cl3 and SC43 cl1. The letters A1–A3 correspond to the different inserts cloned from each T. cruzi clone. CLBrener-Esm (AAHK01001457.1) and CLBrener non-Esmeraldo (AAHK01000386.1) correspond to the respective haplotypes detected in the published data bank of the T. cruzi CLBrener genome. SCLE10-A and SCLE10-B are the sequences of the respective primers used for the cloning of these marker alleles. In the figure is indicated the position of the CA microsatellite repeat. Numbers flanking the sequences are the respective length of each sequence (RTF 57.0 KB)

Fig. S2

Alignments of the SCLE11 microsatellite alleles cloned from the T. cruzi clones: CBB cl3 and SC43 cl1. The letters A1–A3 correspond to the different inserts cloned from each T. cruzi clone. CLBrener-Esm (AAHK01000459.1) and CLBrener non-Esmeraldo (AAHK01002302.1) correspond to the respective haplotypes detected in the published data bank of the T. cruzi CLBrener genome. SCLE11-A and SCLE11B are the sequences of the respective primers used for the cloning of these marker alleles. In the figure is indicated the position of the CA microsatellite repeat. Numbers flanking the sequences are the respective length of each sequence (RTF 57.0 KB)

Fig. S3

Alignments of the MCLG10 microsatellite alleles cloned from the T. cruzi clones: CLBrener and SC43cl1. The letters A1–A2 correspond to the different inserts cloned from each T. cruzi clone. CLBrener-Esm (AAHK01000157.1) and CLBrener non-Esmeraldo (AAHK01000313.1) correspond to the respective haplotypes detected in the published data bank of the T. cruzi CLBrener genome. MCLG10-A and MCLG10-B are the sequences of the respective primers used for the cloning of these marker alleles. In the figure is indicated the position of the CA microsatellite repeat. Numbers flanking the sequences are the respective length of each sequence (RTF 57.0 KB)

Fig. S4

Alignments of the MCL03 microsatellite alleles cloned from the T. cruzi clones: CBBcl3 and SC43cl1. The letters A1–A3 correspond to the different inserts cloned from each T. cruzi clone. CLBrener (AAHK01000726.1) retrieved from the published data bank of the T. cruzi CLBrener genome. MCLG10-A and MCLG10-B are the sequences of the respective primers used for the cloning of these marker alleles. In the figure is indicated the position of the CA microsatellite repeat. Numbers flanking the sequences are the respective length of each sequence (RTF 57.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venegas, J., Coñoepan, W., Pichuantes, S. et al. Phylogenetic analysis of microsatellite markers further supports the two hybridization events hypothesis as the origin of the Trypanosoma cruzi lineages. Parasitol Res 105, 191–199 (2009). https://doi.org/10.1007/s00436-009-1386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1386-0

Keywords

Navigation