Skip to main content

Advertisement

Log in

An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water samples

  • Original Article
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The performance of polymerase chain reaction (PCR) procedures for the detection of Cryptosporidium parvum HNJ-1 strain (genotype II) oocysts purified from mice using published protocols was evaluated. Oocysts were concentrated from fecal samples of infected severe combined immunodeficiency (SCID) mice by sucrose flotation and were then purified by immunomagnetic separation method. The genotype of C. parvum was established as type II by restriction fragment length polymorphism (RFLP) analysis. Water samples were spiked with different numbers of oocysts, determined by limiting dilution. Genomic DNA was extracted and used for PCR assays targeting various Cryptosporidium species genes (Beta-Tubulin, COWP, 70 kDa HSP, SSU rRNA, ITS1, TRAP-C1 and TRAP-C2 gene). DNA from oocyst numbers of more than 1 × 104 was detected using each of the primers. However, when using lower oocyst numbers, the tools based on 9 of the 16 different primer assays gave sufficient results. Assays using the remaining seven primers gave less than satisfactory results. A new primer set, named VKSS-F1/2 and VKSS-R1/2, that target the 18 SSU rRNA gene of C. parvum was constructed and applied.The VKSS-F1/2 and VKSS-R1/2 assays amplified DNA isolated from spiked samples in 206 of 211 trials (97.6%). This illustrates the difficulty of detecting low numbers of Cryptosporidium spp. oocysts by molecular methods when working with environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe N, Iseki M (2004) Identification of Cryptosporidium isolates from cockatiels by direct sequencing of the PCR-amplified small subunit ribosomal RNA gene. Parasitol Res 92:523–526

    Article  PubMed  Google Scholar 

  • Abe N, Kimata I, Iseki M (2002) Identification of genotypes of Cryptosporidium parvum isolates from a patient and a dog in Japan. J Vet Med Sci 64:165–168

    Article  PubMed  Google Scholar 

  • Abe N, Takami K, Kimata I, Iseki M (2004) Molecular characterization of a Cryptosporidium isolate from a banded mongoose Mungos mungo. J Parasitol 90:167–171

    Article  PubMed  CAS  Google Scholar 

  • Abe N, Matsubayashi M, Kimata I, Iseki M (2006) Sub-genotype analysis of Cryptosporidium parvum isolates from humans and animals in Japan using the 60-kDa glycoprotein gene sequences. Parasitol Res 99:303–305

    Article  PubMed  Google Scholar 

  • Akiyoshi DE, Feng X, Buckholt MA, Widmer G, Tzipori S (2002) Genetic analysis of a Cryptosporidium parvum human genotype I isolate passaged through different host species. Infect Immun 70:5670–5675

    Article  PubMed  CAS  Google Scholar 

  • Amar CFL, Dear PH, McLauchlin J (2004) Detection and identification by real time PCR/RFLP analysis of Cryptosporidium species from human faeces. Lett Appl Microbiol 38:217–222

    Article  PubMed  CAS  Google Scholar 

  • Caccio S, Homan W, Camilli R, Traldi G, Kortbeek T, Pozio E (2000) A microsatellite marker reveals population heterogeneity within human and animal genotypes of Cryptosporidium parvum. Parasitology 120:237–244

    Article  PubMed  Google Scholar 

  • Caccio SM, Thompson RCA, McLauchlin J, Smith HW (2005) Unravelling Cryptosporidium and Giardia epidemiology. Trends Parasitol 21:431–437

    Article  CAS  Google Scholar 

  • Cama V, Gilman RH, Vivar A, Ticona E, Ortega Y, Bern C, Xiao L (2006) Mixed infections and HIV. Emerg Infect Dis 12:1025–1028

    PubMed  Google Scholar 

  • Carraway M, Tzipori S, Widmer G (1996) Identification of genetic heterogeneity in the Cryptosporidium parvum ribosomal repeat. Appl Environ Microbiol 62:712–716

    PubMed  CAS  Google Scholar 

  • Dawson D (2005) Foodborne protozoan parasites. Int J Food Microbiol 103:207–227

    Article  PubMed  Google Scholar 

  • De Graaf CD, Vanopdenbosch E, Ortega-Mora LM, Abbassi H, Peeters JE (1999) A review of the importance of cryptosporidiosis in farm animals. Int J Parasitol 29:1269–1287

    Article  PubMed  Google Scholar 

  • Elwin K, Chalmers RM, Roberts R, Guy EC, Casemore DP (2001) Modification of a rapid method for the identification of gene-specific polymorphisms in Cryptosporidium parvum and its application to clinical and epidemiological investigations. Appl Environ Microbiol 67:5581–5584

    Article  PubMed  CAS  Google Scholar 

  • Fayer R (2004) Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol 126:37–56

    Article  PubMed  Google Scholar 

  • Fayer R, Morgan U, Upton SJ (2000) Epidemiology of Cryptosporidium: transmission, detection and identification. Int J Parasitol 30:1305–1322

    Article  PubMed  CAS  Google Scholar 

  • Fayer R, Santin M, Trout JM (2007) Prevalence of Cryptosporidium species and genotypes in mature dairy cattle on farms in eastern United States compared with younger cattle from the same locations. Vet Parasitol 145:260–266

    Article  PubMed  Google Scholar 

  • Feng Y, Ortega Y, He G, Das P, Xu M, Zhang X, Fayer R, Gatei W, Cama V, Xiao L (2007) Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Vet Parasitol 144:1–9

    Article  PubMed  Google Scholar 

  • Ferguson C, Deere D, Sinclair M, Chalmers R, Elwin K, Hadfield S, Xiao L, Ryan U, Gasser R, El-Osta YA, Stevens M (2006) Meeting report: application of genotyping methods to assess risks from Cryptosporidium in watersheds. Environ Health Perspect 114:430–434

    Article  PubMed  Google Scholar 

  • Gobet P, Toze S (2001) Sensitive genotyping of Cryptosporidium parvum by PCR-RFLP analysis of the 70-kilodalton heat shock protein (HSP70) gene. FEMS Microbiol Lett 200:37–41

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Nakai Y (2005) A novel genotype of Cryptosporidium muris from large Japanese field mice, Apodemus speciosus. Parasitol Res 97:373–379

    Article  PubMed  Google Scholar 

  • Homan W, van Gorkom T, Kan YY, Hepener J (1999) Characterization of Cryptosporidium parvum in human and animal feces by single-tube nested polymerase chain reaction and restriction analysis. Parasitol Res 85:707–712

    Article  PubMed  CAS  Google Scholar 

  • Hunter PR, Thompson RCA (2005) The zoonotic transmission of Giardia and Cryptosporidium. Int J Parasitol 35:1181–1190

    Article  PubMed  Google Scholar 

  • Karanis P, Schoenen D (2001) Biological test for the detection of low concentrations of infectious Cryptosporidium parvum oocysts in water. Acta Hydrochim Hydrobiol 29:242–245

    Article  CAS  Google Scholar 

  • Karanis P, Kourenti C, Smith H (2007) Water-borne transmission of protozoan parasites: a review of world-wide outbreaks and lessons we learnt. J Water Health 5:1–38

    Article  PubMed  Google Scholar 

  • Kimura A, Suzuki Y, Matsui T (2004) Identification of the Cryptosporidium isolate from chickens in Japan by sequence analysis. J Vet Med Sci 66:879–881

    Article  PubMed  CAS  Google Scholar 

  • Kimura A, Edagawa A, Okada K, Takimoto A, Yonesho S and Karanis P (2007) Detection and genotyping of Cryptosporidium from brown rats (Rattus norvegicus) captured in an urban area of Japan. Parasitol Res 100:1417–1420

    Article  PubMed  Google Scholar 

  • Koyama Y, Satoh M, Maekawa K, Hikosaka K, Nakai Y (2005) Isolation of Cryptosporidium andersoni Kawatabi type in a slaughterhouse in the northern island of Japan. Vet Parasitol 130:323–326

    Article  PubMed  CAS  Google Scholar 

  • Masago Y, Oguma K, Katayama H, Ohgaki S (2006) Quantification and genotyping of Cryptosporidium spp. in river water by quenching probe PCR and denaturing gradient gel electrophoresis. Water Sci Technol 54(3):119–126

    Article  PubMed  CAS  Google Scholar 

  • Matsubayashi M, Abe N, Takami K, Kimata I, Iseki M, Nakanishi T, Tani H, Sasai K, Baba E (2004) First record of Cryptosporidium infection in a raccoon dog (Nyctereutes procyonoides viverrinus). Vet Parasitol 120:171–175

    Article  PubMed  Google Scholar 

  • Matsubayashi M, Kimata I, Iseki M, Hajiri T, Tani H, Sasai K, Baba E (2005) Infectivity of a novel type of Cryptosporidium andersoni to laboratory mice. Vet Parasitol 129:65–68

    Article  Google Scholar 

  • Monis PT, Giglio S, Keegan AR, Thompson ARC (2005) Emerging technologies for the detection and genetic characterization of protozoan parasites. Trends Parasitol 21:340–346

    Article  PubMed  CAS  Google Scholar 

  • Nakai Y, Hikosaka K, Sato M, Sasaki T, Kaneta Y, Okazaki N (2004) Detection of Cryptosporidium muris type oocysts from beef cattle in a farm and from domestic and wild animals in and around the farm. J Vet Med Sci 66:983–984

    Article  PubMed  Google Scholar 

  • Nichols RAB, Campbell BM, Smith HV (2003) Identification of Cryptosporidium spp. oocysts in United Kingdom noncarbonated natural mineral waters and drinking waters by using a modified nested PCR-restriction fragment length polymorphism assay. Appl Environ Microbiol 69:4183–4189

    Article  PubMed  CAS  Google Scholar 

  • Nichols R, Moore J, Smith H (2006) A rapid method for extracting oocyst DNA from Cryptosporidium-positive human faeces for outbreak investigation. J Microbiol Methods 65:512–524

    Article  PubMed  CAS  Google Scholar 

  • Ong CS, Eisler DL, Goh SH, Tomblin J, Awad-El-Kariem FM, Beard CB, Xiao L, Sulaiman IM, Lal AA, Fyfe M, King A, Bowie WR, Isaac-Renton JL (1999) Molecular epidemiology of cryptosporidiosis outbreaks and transmission in British Columbia, Canada. Am J Trop Med Hyg 61:63–69

    PubMed  CAS  Google Scholar 

  • Pedraza-Diaz S, Amar C, Nichols GL, McLauchlin J (2001) Nested Polymerase Chain Reaction for amplification of the Cryptosporidium oocyst wall protein gene. Emerg Infect Dis 7:49–56

    Article  PubMed  CAS  Google Scholar 

  • Plutzer J, Karanis P (2007) Genotype and subtype analyses of Cryptosporidium isolates from cattle in Hungary. Vet Parasitol 146:357–362

    Article  PubMed  CAS  Google Scholar 

  • Quintero-Betancourt W, Peele ER, Rose JB (2002) Cryptosporidium parvum and Cyclospora cayetanensis: a review of laboratory methods for detection of these waterborne parasites. J Microbiol Methods 49:209–224

    Article  PubMed  Google Scholar 

  • Reed C, Sturbaum GD, Hoover PJ, Sterling CR (2002) Cryptosporidium parvum mixed genotypes by PCR-restriction fragment length polymorphism analysis. Appl Environ Microbiol 68:427–429

    Article  PubMed  CAS  Google Scholar 

  • Rochelle PA, De Leon R, Stewart MH, Wolfe RL (1997a) Comparison of primers and optimization of PCR conditions for detection of Cryptosporidium parvum and Giardia lamblia in water. Appl Environ Microbiol 63:106–114

    PubMed  CAS  Google Scholar 

  • Rochelle PA, Fergusson DM, Handojo TJ, De Leon R, Stewart MH, Wolfe RL (1997b) An assay combining cell culture with reverse transcriptase PCR to detect and determine the infectivity of waterborne Cryptosporidium parvum. Appl Environ Microbiol 63:2029–2037

    PubMed  CAS  Google Scholar 

  • Santin M, Trout MJ, Xiao L, Zgou L, Greiner E, Fayer R (2004) Prevalence and age-related variation of Cryptosporidium species and genotypes in dairy claves. Vet Parasitol 122:103–117

    Article  PubMed  Google Scholar 

  • Satoh M, Kimata I, Iseki M, Nakai Y (2005) Gene analysis of Cryptosporidium parvum HNJ-1 strain isolated in Japan. Parasitol Res 97:452–457

    Article  PubMed  Google Scholar 

  • Satoh M, Matsubara-Nihei Y, Sasaki T, Nakai Y (2006) Characterization of Cryptosporidium canis isolated in Japan. Parasitol Res 99:746–748

    Article  PubMed  Google Scholar 

  • Savioli L, Smith H, Thompson RCA (2006) Giardia and Cryptosporidium join the “neglected diseases initiative”. Trends Parasitol 22:204–208

    Article  Google Scholar 

  • Shiibashi T, Imai T, Sato Y, Abe N, Yukawa M, Nogami S (2006) Cryptosporidium infection in juvenile pet rabbits. J Vet Med Sci 68:281–282

    Article  PubMed  Google Scholar 

  • Slapeta J (2006) Cryptosporidium species found in cattle: a proposal for a new species. Trends Parasitol 10:469–474

    Article  Google Scholar 

  • Smith HV, Caccio SM, Tait A, McLauchlin J, Thompson RCA (2006) Tools for the investigating the environmental transmission of Cryptosporidium and Giardia in humans. Trends Parasitol 22:160–167

    Article  PubMed  Google Scholar 

  • Sotiriadou I, Leetz AS, Karanis P (2006) Design of new specific Cryptosporidium primers and optimization of PCR conditions for oocyst detection. Proceedings of ICOPA XI, 11th International Congress of Parasitology, 6th–11th August 2006, Glasgow, Scotland, UK

  • Spano F, Putignani L, McLauchlin J, Casemore DP, Crisanti A (1997) PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum isolates of human and animal origin. FEMS Microbiol Let 150:209–217

    Article  CAS  Google Scholar 

  • Spano F, Putignani L, Crisanti A, Sallicandro P, Morgan UM, LeBlancq SM, Tchack L, Tzipori S, Widmer G (1998a) Multilocus genotypic analysis of Cryptosporidium parvum isolates from different hosts and geographical origins. J Clin Microbiol 36:3255–3259

    PubMed  CAS  Google Scholar 

  • Spano F, Putignani L, Naitza S, Puri C, Wright S, Crisanti A (1998b) Molecular cloning and expression analysis of a Cryptosporidium parvum gene encoding a new member of the thrombospondin family. Mol Biochem Parasitol 92:147–162

    Article  PubMed  CAS  Google Scholar 

  • Sreter T, Kovacs G, Da Silva A, Pieniazek NJ, Szell Z, Dobos-Kovacs m, Marialigeti K, Varga I (2000) Morphologic, host specificity and molecular characterization of a Hungarian Cryptosporidium meleagridis isolate. Appl Environ microbial 66:735–738

    Article  CAS  Google Scholar 

  • Stinear T, Matusan A, Hines K, Sandery M (1996) Detection of a single viable Cryptosporidium parvum oocyst in environmental water concentrates by reverse transcription-PCR. Appl Environ Microbiol 62:3385–3390

    PubMed  CAS  Google Scholar 

  • Sturbaum GD, Reed C, Hoover PJ, Jost BH, Marshall MM, Sterling CR (2001) Species-specific, nested PCR-restriction fragment length polymorphism detection of single Cryptosporidium parvum oocysts. Appl Environ Microbiol 67:2665–2668

    Article  PubMed  CAS  Google Scholar 

  • Sulaiman IM, Xiao L, Yang C, Escalante L, Moore A, Beard CB, Arrowood MJ, Lal AA (1998) Differentiating human from animal isolates of Cryptosporidium parvum. Emerg Infect Dis 4:681–685

    Article  PubMed  CAS  Google Scholar 

  • Sulaiman IM, Xiao L, Lal AA (1999) Evaluation of Cryptosporidium parvum genotyping techniques. Appl Environ Microbiol 65:4431–4435

    PubMed  CAS  Google Scholar 

  • Sulaiman IM, Morgan UM, Thompson RCA, Lal AA, Xiao L (2000) Phylogenetic relationships of Cryptosporidium parasites based on the 70-kilodalton heat shock protein (HSP70) gene. Appl Environ Microbiol 66:2385–2391

    Article  PubMed  CAS  Google Scholar 

  • Sunnotel O, Lowery CJ, Moore JE, Dooley JSG, Xiao L, Millar BC (2006) Under the microscope: Cryptosporidium. Lett Appl Microbiol 43:7–16

    Article  PubMed  CAS  Google Scholar 

  • Trotz-Williams LA, Martin DS, Gatei W, Cama, V, Peregrine AS, Martin SW, Nydam DV, Jamieson F, Xiao L (2006) Genotype and subtype analyses of isolates from dairy calves and humans in Ontario. Parasitol Res 99:346–352

    Article  PubMed  CAS  Google Scholar 

  • USEPA (2001) Method 1623: Cryptosporidium and Giardia in water by filtration/IMS/FA. EPA 821-R-01025. Office of Water 4603, U.S. Environmental Protection Agency, Washington, DC 3–5, 8, 31–32, 38–40

  • Widmer G, Tchack L, Chappell CL, Tzipori S (1998) Sequence polymorphism in the beta-tubulin gene reveals heterogeneous and variable population structures in Cryptosporidium parvum. Appl Environ Microbiol 64:4477–4481

    PubMed  CAS  Google Scholar 

  • Widmer G, Orbacz EA, Tzipori S (1999) Beta-tubulin mRNA as a marker of Cryptosporidium parvum oocyst viability. Appl Environ Microbiol 65:1584–1588

    PubMed  CAS  Google Scholar 

  • Wu Z, Nagano I, Boonmars T, Nakada T, Takahashi Y (2003) Intraspecies polymorphism of Cryptosporidium parvum revealed by PCR-restriction fragment length polymorphism (RFLP) and RFLP-single strand conformational polymorphism analyses. Appl Environ Microbiol 69:4720–4726

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Ryan U (2004) Cryptosporidiosis: An update in molecular epidemiology. Curr Opin Inf Dis 17:483–490

    Article  Google Scholar 

  • Xiao L, Escalante L, Yang C, Sulaiman IM, Escalante AA, Montali RJ, Fayer R, Lal AA (1999) Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus. Appl Environ Microbiol 65:1578–1583

    PubMed  CAS  Google Scholar 

  • Xiao L, Sulaiman IM, Ryan U, Zhou U, Atwill E, Tischler M, Zhang X, Fayer R, Lal AA (2002) Host adaptation and host-parasite co-evolution in Cryptosporidium: Implications for taxonomy and public health. Int J Parasitol 32:1773–1785

    Article  PubMed  Google Scholar 

  • Xiao L, Fayer R, Ryan U, Upton J (2004) Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev 17:72–97

    Article  PubMed  Google Scholar 

  • Xiao L, Zhou L, Santin M, Yang W, Fayer R (2007) Distribution of Cryptosporidium parvum subtypes in calves in eastern United States. Parasitol Res 100:701–706

    Article  PubMed  Google Scholar 

  • Yagita K, Izumiyama S, Taschibana H, Masuda G, Iseki M, Furuya K, Kameoka Y, Kuroki T, Itagaki T, Endo T (2001) Molecular characterization of Cryptosporidium isolates from human and bovine infections in Japan. Parasitol Res 87:950–955

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by institutional funds of the Center of Anatomy, Medical School of the University of Cologne, by the University of Cologne Investitionsfonds ‘Lehre & Forschung’ 2006, and by the Grant-in-Aid for Young Scientists, Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and from the 21st Century COE Program (A-1), Ministry of Education, Sports, Science, and Technology of Japan. We would like to thank to thank Professor Juergen Koebke (Center of Anatomy, Institute II, Medical School, University of Cologne), coordinator for international affairs, for his support on this collaboration. The authors would like to thank Professor Arwid Daugschies and Dr Michael Najdrowski, Veterinary School, University of Leipzig, Germany for kindly providing one bovine isolate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Karanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leetz, A.S., Sotiriadou, I., Ongerth, J. et al. An evaluation of primers amplifying DNA targets for the detection of Cryptosporidium spp. using C. parvum HNJ-1 Japanese isolate in water samples. Parasitol Res 101, 951–962 (2007). https://doi.org/10.1007/s00436-007-0567-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-007-0567-y

Keywords

Navigation