Skip to main content
Log in

Genetic and phylogeographic structure of populations of Pulex simulans (Siphonaptera) in Peru inferred from two genes (CytB and CoII)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In this paper we discuss the potential usefulness of determining the phylogeographic and phylogenetic patterns of a vector for understanding the spread of pathogens or insecticide resistance. We do so using the example of Pulex simulans in Peru. Six populations from six different localities were investigated. Mitochondrial DNA sequences were obtained and branching patterns were inferred using phylogenetic reconstruction methods and nested clade analyses. Ten different haplotypes were discovered. Phylogenetic analysis revealed P. simulans in Peru as a monophyletic group, containing clades that were generally not geographically correlated. The data suggest that P. simulans is not a single genetic entity but rather that this species shows a high degree of intraspecific variation. Restricted gene flow with long distance dispersal coupled with range expansion and long distance colonization are likely to have contributed to the observed patterns of variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acha P, Szyfres B (1994) Zoonoses and communicable diseases common to man and animals. PAHO, Washington

  • Campos J, Andrade CF (2002) Insecticide resistance in Simulium populations (Diptera, Simuliidae). Cad Saude Publ 18:661–671

    Google Scholar 

  • Didier R, La Scola B (2001) A flea associated Rickettsia pathogen of humans. Emerg Infect Dis 7:23–29

    Google Scholar 

  • Dittmar K (2001) Untersuchungen zum Vorkommen von Ektoparasiten bei domestizierten und wildlebenden Meerschweinchen (Cavia spp.) sowie an präinkaischen Meerschweinchenmumien in Peru, Südamerika. Doctoral dissertation, University of Leipzig, Leipzig

  • Felsenstein J (1995) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Huelsenbeck JP, RonquistF, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  CAS  PubMed  Google Scholar 

  • Johnson KP, Seger J (2001) Elevated rates of nonsynonymous substitution in Island birds. Mol Biol Evol 18:874–881

    CAS  PubMed  Google Scholar 

  • Kuhner MK, Yamato J, Felsenstein J (1995) Estimating effective population size and neutral mutation rate from sequence data using Metropolis-Hastings sampling. Genetics 140:1421–1430

    CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    CAS  PubMed  Google Scholar 

  • Maekawa K, Kitade O, Matsumoto T (1999) Molecular phylogeny of the orthopteroid insects based on the mitochondrial cytochrome oxidase II gene. Zool Sci 16:175–184

    CAS  Google Scholar 

  • Mikevich MF, Farris SJ (1981) The implications of congruence in Menidia. Syst Zool 30:351–370

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA, Templeton AR (2000) GEODIS: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488

    CAS  PubMed  Google Scholar 

  • Sorenson MD (1999) TreeRot, version 2. Boston University, Boston

  • Swofford DL (1998) PAUP* Phylogenetic analysis using parsimony (*and other methods), version 4.0. Sinauer, Sunderland, Mass.

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–596

    CAS  PubMed  Google Scholar 

  • Templeton AR (1998) Nested clade analysis of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397

    CAS  PubMed  Google Scholar 

  • Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analysis with cladogram uncertainty and recombination. Genetics 134:659–699

    CAS  PubMed  Google Scholar 

  • Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of geographical distribution of mitochondrial DNA haplotypes in the tiger salamander Ambystoma tigrinum. Genetics 140:767–782

    CAS  PubMed  Google Scholar 

  • Zhang J, Rosenberg HF, Nei M (1998) Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A 95:7308–7313

    Google Scholar 

  • Ziam M, Guillet P (2002) Alternative insecticides: an urgent need. Trends Parasitol 10:161–163

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Karl-Enigk-Foundation, Germany, and the NSF grant no. DEB 9983195 for support and Manuel Gonzales for the help obtaining the Salas specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Dittmar de la Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Cruz, K.D., Whiting, M.F. Genetic and phylogeographic structure of populations of Pulex simulans (Siphonaptera) in Peru inferred from two genes (CytB and CoII). Parasitol Res 91, 55–59 (2003). https://doi.org/10.1007/s00436-003-0879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-003-0879-5

Keywords

Navigation