Skip to main content
Log in

The sperm of Xenacoelomorpha revisited: implications for the evolution of early bilaterians

  • Original paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Sperm structure of the Xenacoelomorpha (Acoelomorpha plus Xenoturbellida) is updated in the light of new discoveries or new interpretations of existing data. Nemertodermatida and Acoela (Acoelomorpha) have introsperm with certain basic features in common, but all acoels lack acrosomes and usually have two flagella with unusual combinations of microtubules, whereas all nemertodermatids have small, simple acrosomes and a typical 9 + 2 flagellum. Xenoturbellida is currently considered as the sister taxon to Acoelomorpha. Xenoturbella bocki has an aquasperm that has almost nothing in common with the sperm of Acoelomorpha. We argue that the aquasperm ultrastructure of X. bocki has much in common with sperm of hemichordates and to some extent echinoderms, which was previously disputed. Molecular analyses have on the one hand supported a connection with deuterostomes but on the other hand have negated it, suggesting that the closest common ancestor of Xenacoelomorpha is either the Nephrozoa, Deuterostomia or Protostomia. Sperm structure is highly diverse among Xenacoelomorpha, with protostome-like traits in Acoelomorpha and deuterostome-like traits in Xenoturbella. Assuming Xenacoelomorph monophyly and ancestral introsperm in this taxon, however, suggests that the re-expression of the aquasperm form of Xenoturbella, involving some key changes in sperm morphology, is a secondarily derived state that could have occurred through “progenetic spermiogenesis” with the precocious development of round spermatids to maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achatz JG, Hooge M, Wallberg A, Jondelius U, Tyler S (2010) Systematic revision of acoels with 9 + 0 sperm ultrastructure (Convolutida) and the influence of sexual conflict on morphology. J Zool Syst Evol Res 48:9–32

    Article  Google Scholar 

  • Achatz JG, Chiodin M, Salvenmoser W, Tyler S, Martinez M (2013) The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis). Org Divers Evol 13:267–286. https://doi.org/10.1007/s13127-012-0112-4

    Article  PubMed  Google Scholar 

  • Baccetti B, Gaino E, Sará M (1986) A sponge with acrosome: Oscularella lobularis. J Ultra Mol Struct Res 94:195–198

    Article  Google Scholar 

  • Bieler R, Mikkelsen PM, Collins TM, Glover ER, Gonzalez VL, Graf DL, Harper EM, Healy J, Kawanski GY, Sharma PP, Staubach S, Strong EE, Taylor JD, Temkin I, Zardus JD, Clark S, Guzman A, McIntyre E, Sharp P, Giribet G (2014) Investigating the Bivalve Tree of Life—an exemplar-based approach combining molecular and novel morphological characters. Invert Syst 28:32–115

    Article  Google Scholar 

  • Boone M, Bert W, Claeys M, Houthoofd W, Artois T (2011) Spermatogenesis and the structure of the testes in Nemertodermatida. Zoomorphology 130:273–282

    Article  Google Scholar 

  • Boyer BC, Smith GW (1982) Sperm morphology and development in two acoel Turbellarians from the Phillippines. Pacific Sci 36:365–380

    Google Scholar 

  • Brauchle M, Bilican A, Eyer C, Bailly X, Martinez P, Ladurner P, Bruggmann R, Sprecher SG (2018) Xenacoelomorpha survey reveals that all 11 animal homeobox gene classes were present in the first bilaterians. Genome Biol Evol 10(9):2205–2217. https://doi.org/10.1093/gbe/evy170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckland-Nicks JA (1995) Ultrastructure of sperm and sperm–egg interaction in Aculifera: implications for molluscan phylogeny. In: Jamieson BGM, Ausio J-L, Justine J (eds) Advances in spermatozoal phylogeny and taxonomy, vol 166. Mémoires du Muséum national d’Histoire Naturelle, Paris, pp 129–153

    Google Scholar 

  • Buckland-Nicks JA (2006) Fertilization in chitons: morphological clues to phylogeny. Venus 65:51–70

    Google Scholar 

  • Buckland-Nicks JA (2008) Fertilization biology and the evolution of chitons. Am J Malacol 25:97–111

    Article  Google Scholar 

  • Buckland-Nicks JA, Chia FS (1986) Formation of the acrosome and basal body during spermiogenesis in a marine snail, Nerita picea (Mollusca: Archaeogastropoda). Mol Reprod Dev 15:13–23

    Google Scholar 

  • Buckland-Nicks JA, Scheltema A (1995) Was internal fertilization an innovation of early Bilateria? Evidence from sperm structure of a mollusc. Proc R Soc B 261:11–18

    Article  Google Scholar 

  • Buckland-Nicks JA, Chia FS, Koss R (1990) Spermiogenesis in Polyplacophora, with special reference to acrosome formation (Mollusca). Zoomorphology 109:179–188

    Article  Google Scholar 

  • Cannon JT, Vellutini BC, Smith J, Ronquist F, Jondelius U, Hejnol A (2016) Xenacoelomorpha is the sister group to Nephrozoa. Nature 530:89–92

    Article  CAS  PubMed  Google Scholar 

  • Colwin AL, Colwin LH (1963) Role of the gamete membranes in fertilization in Saccoglossus kowalevski (Enteropneusta). 1. The acrosomal region and its changes in early stages of fertilization. J Cell Biol 19:477–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colwin AL, Colwin LH (1967) Behavior of the spermatozoon during sperm–blastomere fusion and its significance for fertilization. (Saccoglossus kowalevski: Hemichordata). Z Zellforsch 78:208–220

    Article  CAS  PubMed  Google Scholar 

  • Dunn CW, Leys SP, Haddock SHD (2015) The hidden biology of sponges and ctenophores. Trends Ecol Evol 30:282–291

    Article  PubMed  Google Scholar 

  • Franc J-M (1973) Etude ultrastructurale de la spermatogenèse du Cténaire, Beröe ovata. J Ultrastruct Res 42:255–267

    Article  CAS  PubMed  Google Scholar 

  • Franzén Å (1955) Comparative morphological investigations into the spermiogenesis among Mollusca. Zool Bidr Upps 30:399–456

    Google Scholar 

  • Franzén Å (2001) Sperm structure in the enteropneust Schizocardium sp. (Hemichordata, Enteropneusta) and possible phylogenetic implications. Invert Reprod Dev 39:37–43

    Article  Google Scholar 

  • Friend DS, Fawcett DW (1974) Membrane differentiations in freeze-fractured mammalian sperm. J Cell Biol 63:641–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giusti F, Selmi MG (1982) The morphological peculiarities of the typical spermatozoa of Theodoxus fluviatilis (L) (Neritoidea) and their implications for motility. J Ultrastruct Res 78:166–177

    Article  CAS  PubMed  Google Scholar 

  • Glabe CG, Vacquier VD (1978) Egg surface glycoprotein receptor for sea urchin sperm bindin. Proc Nat Acad Sci USA 75:881–885

    Article  CAS  PubMed  Google Scholar 

  • Gliki G, Ebnet K, Aurrand-Lions M, Imhof BA, Adams RH (2004) Spermatid differentiation requires the assembly of a cell polarity complex downstream of junctional adhesion molecule-C. Nature 431:320–325

    Article  CAS  PubMed  Google Scholar 

  • Haszprunar G (1996) Plathelminthes and Plathelminthomorpha— paraphyletic taxa. J Zool Syst Evol Res 34:41–48. https://doi.org/10.1111/j.1439-0469.1996.tb00808.x

    Article  Google Scholar 

  • Healy JM (1988) Sperm morphology and its systematic importance in the Gastropoda. Malacol Rev Supp 4:251–266

    Google Scholar 

  • Healy JM (1996) Molluscan sperm ultrastructure: correlation with taxonomic units within the Gastropoda, Cephalopoda and Bivalvia. In: Taylor J (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford, pp 99–113

    Google Scholar 

  • Hejnol A, Martindale MQ (2008) Acoel development supports a simple planula-like urbilaterian. Philos Trans R Soc B 363:1493–1501

    Article  Google Scholar 

  • Hejnol A, Pang K (2016) Xenacoelomorpha’s significance for understanding bilaterian evolution. Curr Opin Genet Dev 39:48–54

    Article  CAS  PubMed  Google Scholar 

  • Hejnol A. Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenetic methods. Proc R Soc B 276:4261–4270

    Article  PubMed  Google Scholar 

  • Hendelberg J (1977) Comparative morphology of turbellarian spermatozoa studied by electron microscopy. Acta Zool 154:149–162

    Google Scholar 

  • Hendelberg J (1986) The phylogenetic significance of sperm morphology in the Platyhelminthes. Hydrobiologia 133:53–58

    Article  Google Scholar 

  • Hinsch GW (1974) Comparative ultrastructure of cnidarian sperm. Am Zool 14:457–465

    Article  Google Scholar 

  • Hodgson AN, Healy JM, Tunnicliffe V (1997) Spermatogenesis and sperm structure of the hydrothermal vent prosobranch gastropod Lepetodrilus fucensis (Lepetodrilidae, Mollusca). Invert Reprod Dev 31:87–97

    Article  Google Scholar 

  • Jamieson BGM, Rouse GW (1989) The spermatozoa of the Polychaeta (Annelida): an ultrastructural review. Biol Rev 64:93–157

    Article  CAS  PubMed  Google Scholar 

  • Jondelius U, Ruiz-Trillo I, Baguñà J, Riutort M (2002) The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zool Script 31:201–215

    Article  Google Scholar 

  • Jondelius U, Wallberg A, Hooge M, Raikova O (2011) How the worm got its pharynx: phylogeny, classification and bayesian assessment of character evolution in Acoela. Syst Biol 60:845–871

    Article  PubMed  Google Scholar 

  • Justine J-L (1991) Phylogeny of parasitic Platyhelminthes: a critical study of synapomorphies proposed on the basis of the ultrastructure of spermiogenesis and spermatozoa. Can J Zool 9:1421–1440

    Article  Google Scholar 

  • Justine J-L (2001) Spermatozoa as phylogenetic characters for the Platyhelminthes. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. CRC Press, Boca Raton, USA, pp 231–238

    Google Scholar 

  • Kwitny S, Klaus AV, Hunnicutt GR (2010) The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during late steps of spermiogenesis. Biol Reprod 82:669–678

    Article  CAS  PubMed  Google Scholar 

  • Lundin K, Hendelberg J (1998) Is the sperm type of the Nemertodermatida close to that of the ancestral Platyhelminthes? Hydrobiologia 383:197–205

    Article  Google Scholar 

  • Lundin K, Sterrer W (2000) The Nemertodermatida. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. CRC Press, pp 24–27

    Google Scholar 

  • Meyer-Wachsmuth I, Jondelius U (2016) Interrelationships of Nemertodermatida. Org Divers Evol 16:73–84

    Article  Google Scholar 

  • Obst M, Nakano H, Bourlat SJ, Thorndyke MC, Telford MJ, Nyengaard JR, Funch P (2011) Spermatozoon ultrastructure of Xenoturbella bocki (Westblad 1949). Acta Zool 92:109–115

    Article  Google Scholar 

  • Onoda M, Djakiew D (1993) A 29000 Mr protein derived from round spermatids regulates Sertoli cell secretion. Mol Cell Endocrinol 93:53–61

    Article  CAS  PubMed  Google Scholar 

  • Petrov A, Hooge M, Tyler S (2004) Ultrastructure of sperms in Acoela (Acoelomorpha) and its concordance with molecular systematics. Invert Biol 123:183–197. https://doi.org/10.1111/j.1744-7410.2004.tb00154

    Article  Google Scholar 

  • Philippe H et al (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips DM (1980) Observations on mammalian spermiogenesis using surface replicas. J Ultrastruct Res 72:103–111

    Article  CAS  PubMed  Google Scholar 

  • Raikova OI, Falleni A, Justine J-L (1997) Spermiogenesis in Paratomella rubra (Platyhelminthes, Acoela): ultrastructural immunocytochemical, cytochemical studies and phylogenetic implications. Acta Zool 78:295–307

    Article  Google Scholar 

  • Raikova OL, Reuter M, Justine J-L (2001) Contributions to the phylogeny and systematics of the Acoelomorpha. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. CRC Press, Boca Raton, USA, pp 13–23

    Google Scholar 

  • Rieger RM (1986) Asexual reproduction and the turbellarian archetype. Hydrobiologia 132:35–45

    Article  Google Scholar 

  • Rouse GW, Wilson NG, Caravajal JI, Vrijenhoek RC (2016) New deep sea species of Xenoturbella and the position of Xenacoelomorpha. Nature 530:94–96

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Trillo I, Paps J (2016) Acoelomorpha: earliest branching bilaterians or deuterostomes? Org Divers Evol 16:391–399. https://doi.org/10.1007/s13127-015-0239-1

    Article  Google Scholar 

  • Ruiz-Trillo I, Riutort M, Littlewood DT, Herniou EA, Baguña J (1999) Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. Science 283:1919–1923. https://www.ncbi.nlm.nih.gov/pubmed/10082465

  • Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguñá J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci 99:11246–11251. https://www.ncbi.nlm.nih.gov/pubmed/12177440

  • Summers RG, Hylander BL, Colwin LH, Colwin AL (1975) The functional anatomy of the echinoderm spermatozoan and its interaction with the egg at fertilization. Am Zool 15:523–551

    Article  Google Scholar 

  • Tyler S, Rieger RM (1975) Uniflagellate spermatozoa in Nemertoderma (Turbellaria) and their phylogenetic significance. Science 188:730–732

    Article  CAS  PubMed  Google Scholar 

  • Tyler S, Rieger RM (1977) Ultrastructural evidence for the systematic position of the Nemertodermatida (Turbellaria). Acta Zool 154:193–207

    Google Scholar 

  • Wallberg A, Curini-Galletti M, Ahmadzadeh A, Jondelius U (2007) Dismissal of Acoelomorpha: Acoela and Nemertodermatida are separate early bilaterian clades. Zool Script 36:509–523

    Article  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to the work of Seth Tyler, Reinhard Rieger and Jan Hendelberg for the original discovery of the nemertodermatid sperm in the 1970s. Seth Tyler kindly provided J.B-N. with grids that were used for further studies of the sperm of Flagellophora apelti and Andreas Hejnol supplied J.B-N. with fixed specimens of Convolutriloba longifissura and we thank them both very much. In memory of Jan Hendelberg and Reinhard Rieger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Buckland-Nicks.

Ethics declarations

Ethical statement

This study was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant (#46205) to John Buckland-Nicks.

Conflict of interest

The authors declare that they have no conflicts of interest.

Studies with human participants

This study does not contain studies with human participants performed by any of the authors. All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies using animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. All appropriate data created by the authors (i.e., photographs, diagrams) are available in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buckland-Nicks, J., Lundin, K. & Wallberg, A. The sperm of Xenacoelomorpha revisited: implications for the evolution of early bilaterians. Zoomorphology 138, 13–27 (2019). https://doi.org/10.1007/s00435-018-0425-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-018-0425-8

Keywords

Navigation