Skip to main content
Log in

Comparative neuroanatomy of Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda (Mollusca) and its phylogenetic implications

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The nervous system of invertebrates is considered to be a very conservative organ system and thus can be helpful to elucidate questions of phylogenetic relationships. Up to now, comparative neuroanatomical studies have been mainly focused on arthropods, where in-depth studies on major brain structures are abundant. In contrast, except for Gastropoda and Cephalopoda, the nervous system of representatives of the second largest phylum of invertebrates, the Mollusca, is as yet hardly investigated. We therefore initiated an immunohistochemical survey to contribute new neuroanatomical data for several molluscan taxa, especially the lesser known Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda, focusing on the cellular architecture and distribution of neurotransmitters in the brain. Antisera against the widespread neuroactive substances FMRFamide and serotonin were used to label subsets of neurons. Both antisera were additionally used in combination with acetylated α-tubulin and the nuclear marker DAPI. This enables us to describe the morphology of the nervous system at a fine resolution and to compare its cellular architecture between different species of one taxon, as well as between different taxa of mollusks. On the basis of these results, the nervous system of caudofoveates seems to be most highly derived within the so-called basal (non-conchiferan) mollusks, and a monophyly of a clade Aplacophora could not be confirmed. In general, the brain as well as the remaining nervous system of the molluscan taxa investigated shows a great variability, suggesting a deep time origin of the diversification of this prominent protostome clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aktipis SW, Giribet G, Lindberg DR, Ponder WF (2008) Gastropoda: an overview and analysis. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley, pp 201–238

    Google Scholar 

  • Audesirk G, McCaman RE, Denniswillows AO (1979) Role of serotonin in the control of pedal ciliary activity by identified neurons in Tritonia diomedea. Comp Biochem Physiol C 62:87–91

    Article  Google Scholar 

  • Büchinger T (1998) Vergleichende Untersuchungen am Nervensystem von Solenogastres (Mollusca). Dissertation. University of Vienna, Vienna

    Google Scholar 

  • Budelmann BU, Schipp R, Boletzky S (1997) Cephalopoda. In: Harrison FW, Kohn AB (eds) Microscopic anatomy of invertebrates. Mollusca II, vol 6A. Wiley-Liss, New York, pp 119–414

    Google Scholar 

  • Eernisse DJ, Reynolds PD (1994) Polyplacophora. In: Harrison FW, Kohn AJ (eds) Microscopic anatomy of invertebrates. Mollusca I, vol 5. Wiley-Liss, New York, pp 55–110

    Google Scholar 

  • Gantner R (1989) Morphologie und Nervensystem der Käferschneckenart Lepidochitona monterosatoi (Mollusca, Polyplacophora). Diplomarbeit, Technische Universität München

  • Glaubrecht M, Maitas L, Salvini-Plawen Lv (2005) Aplacophoran Mollusca in the natural history museum Berlin. An annotated catalogue of Thiele’s type specimens, with a brief review of “Aplacophora” classification. Mitt Mus Natkd Berl Zool Reihe 81:145–166

    Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Julius Springer, Berlin

    Google Scholar 

  • Harzsch S (2002) Neurobiologie und Evolutionsforschung: “Neurophylogenie” und die Stammesgeschichte der Euarthropoda. Neuroforum 4:267–273

    Google Scholar 

  • Harzsch S (2006) The architecture of the nervous system provides important characters for phylogenetic reconstructions: examples from the Arthropoda. Species Phylogeny Evol 1:33–57

    Google Scholar 

  • Haszprunar G (1987) The fine morphology of the osphradial sense organs of the Mollusca. IV. Caudofoveata and Solenogastres. Philos Trans R Soc B 315:63–73

    Article  Google Scholar 

  • Haszprunar G (1988) On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. J Moll Stud 54:367–441

    Article  Google Scholar 

  • Haszprunar G (2000) Is the Aplacophora monophyletic? A cladistic point of view. Am Malac Bull 15:115–130

    Google Scholar 

  • Haszprunar G, Schander C, Halanych KM (2008) Relationships of higher molluscan taxa. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley, pp 19–32

    Google Scholar 

  • Heuer CM, Loesel R (2008) Immunofluorescence analysis of the internal brain anatomy of Nereis diversicolor (Polychaeta, Annelida). Cell Tissue Res 331:713–724

    Article  PubMed  CAS  Google Scholar 

  • Heuer CM, Müller CHG, Todt C, Loesel R (2010) Comparative neuroanatomy suggests repeated reduction of neuroarchitectural complexity in Annelida. Front Zool 7:13

    Article  PubMed  Google Scholar 

  • Hoffman S (1949) Studien über das Integument der Solenogastren nebst Bemerkungen über die Verwandtschaft zwischen den Solenogastren und Placophoren. Zool Bidrag Uppsala 27:293–427

    Google Scholar 

  • Hyman LH (1967) Class Aplacophora. In: Hyman LH (ed) The invertebrates. Mollusca I, vol 6. McGraw-Hill, New York, pp 13–70

    Google Scholar 

  • Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos SR, Schander C, Moroz LL, Lieb B, Halanych KM (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456

    Article  PubMed  CAS  Google Scholar 

  • Loesel R (2005) The arthropod brain: retracing six hundred million years of evolution. Arthropod Struct Dev 34:207–209

    Article  Google Scholar 

  • Loesel R (2011) Neurophylogeny: retracing early metazoan brain evolution. In: Pontarotti P (ed) Evolutionary biology: concepts, biodiversity, macroevolution, and genome evolution. Springer, Berlin, pp 169–191

    Chapter  Google Scholar 

  • Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91

    Article  PubMed  Google Scholar 

  • Moroz L, Nezlin L, Elofsson R, Sakharov D (1994) Serotonin- and FMRFamide-immunoreactive nerve elements in the chiton Lepidopleurus asellus (Mollusca, Polyplacophora). Cell Tissue Res 275:277–282

    Article  Google Scholar 

  • Passamaneck YJ, Schander C, Halanych KM (2004) Investigation of molluscan phylogeny using large-subunit and small-subunit nuclear rRNA sequences. Mol Phylogent Evol 32:25–38

    Article  CAS  Google Scholar 

  • Paul DH (1989) A neurophylogenist’s view of decapod Crustacea. Bull Mar Sci 45:487–504

    Google Scholar 

  • Ratté S, Chase R (1997) Morphology of interneurons in the procerebrum of the snail Helix aspersa. J Comp Neurol 384:359–372

    Article  PubMed  Google Scholar 

  • Redl E, Salvini-Plawen Lv (2009) Das Nervensystem der Caudofoveata (Mollusca). VDM Verlag Dr. Müller, Saarbrücken

    Google Scholar 

  • Reynolds PD, Steiner G (2008) Scaphopoda. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley, pp 143–161

    Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    Article  PubMed  Google Scholar 

  • Rodriguez J, Deinhardt F (1960) Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology 12:316–317

    Article  PubMed  CAS  Google Scholar 

  • Runnegar B, Pojeta J (1974) Molluscan phylogeny: the paleontological viewpoint. Science 186:311–317

    Article  PubMed  CAS  Google Scholar 

  • Salvini-Plawen Lv (1967) Neue scandinavische Aplacophora. Sarsia 27:1–63

    Google Scholar 

  • Salvini-Plawen Lv (1972) Zur Morphologie und Phylogenie der Mollusken: Die Beziehungen der Caudofoveata und der Solenogastres als Aculifera, als Mollusca und als Spiralia. Z Wiss Zool 184:205–394

    Google Scholar 

  • Salvini-Plawen Lv (1980) A reconsideration of systematics in the Mollusca (Phylogeny and higher classification). Malacologia 19:249–278

    Google Scholar 

  • Salvini-Plawen Lv (1981) On the origin and evolution of the Mollusca. Atti dei Convegni Lincei 49:235–293

    Google Scholar 

  • Salvini-Plawen Lv (2003) On the phylogenetic significance of the aplacophoran Mollusca. Iberus 21:67–97

    Google Scholar 

  • Salvini-Plawen Lv, Steiner G (1996) Synapomorphies and plesiomorphies in higher classification of Mollusca. In: Taylor J (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford, pp 29–51

    Google Scholar 

  • Sasaki T, Shigeno S, Tanabe K (2010) Anatomy of living Nautilus: reevaluation of primitiveness and comparison with Coleoidea. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—present and past. Tokai University Press, Tokyo, pp 33–66

    Google Scholar 

  • Scheltema AH (1993) Aplacophora as progenetic aculiferans and the coelomate origin of mollusks as the sister taxon of sipuncula. Biol Bull 184:57–78

    Article  Google Scholar 

  • Scheltema AH, Tscherkassky M, Kuzirian AM (1994) Aplacophora. In: Harrison FW, Kohn AJ (eds) Microscopic anatomy of invertebrates. Mollusca I, vol 5. Wiley-Liss, New York, pp 13–54

    Google Scholar 

  • Schwabl M (1955) Rupertomenia fodiens nov. gen., nov. spec., eine neue Lepidomeniide von der Südwestküste Schwedens. Österr Zool Z 6:90–146

    Google Scholar 

  • Shigeno S, Yamamoto M (2002) Organization of the nervous system in the pygmy cuttlefish, Idiosepius paradoxus Ortmann (Idiosepiidae, Cephalopoda). J Morphol 254:65–80

    Article  PubMed  Google Scholar 

  • Shigeno S, Sasaki T, Haszprunar G (2007) Central nervous system of Chaetoderma japonicum (Caudofoveata, Aplacophora): implications for diversified ganglionic plans in early molluscan evolution. Biol Bull 213:122–134

    Article  PubMed  Google Scholar 

  • Shimek RL, Steiner G (1997) Scaphopoda. In: Harrison FW, Kohn AJ (eds) Microscopic anatomy of invertebrates. Mollusca II, vol 6B. Wiley-Liss, New York, pp 719–781

    Google Scholar 

  • Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SCS, Rouse GW, Giribet G, Dunn CW (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tolls. Nature 480:364–367

    Article  PubMed  CAS  Google Scholar 

  • Steiner G, Dreyer H (2003) Molecular phylogeny of Scaphopoda (Mollusca) inferred from 18S rDNA sequences: support for a Scaphopoda-Cephalopoda clade. Zool Scr 32:343–356

    Article  Google Scholar 

  • Strausfeld NJ (1998) Crustacean—insect relationships: the use of brain characters to derive phylogeny amongst segmented invertebrates. Brain Behav Evol 52:186–206

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Andrew DR (2011) A new view of insect-crustacean relationships. I. Inferences from neural cladistics and comparative neuroanatomy. Arthropod Struct Dev 40:276–288

    Article  PubMed  Google Scholar 

  • Strausfeld NJ, Buschbeck EK, Gomez RS (1995) The arthropod mushroom body: its functional roles, evolutionary enigmas and mistaken identities. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser Verlag, Basel, pp 349–381

    Chapter  Google Scholar 

  • Todt C, Büchinger T, Wanninger A (2008a) The nervous system of the basal mollusk Wirenia argentea (Solenogastres): a study employing immunocytochemical and 3D reconstruction techniques. Mar Biol Res 4:290–303

    Article  Google Scholar 

  • Todt C, Okusu A, Schander C, Schwabe E (2008b) Solenogastres, Caudofoveata, and Polyplacophora. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, Berkeley, pp 71–96

    Google Scholar 

  • Vinther J, Sperling EA, Briggs DEG, Peterson KJ (2011) A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors. Proc R Soc B (published online 5 October 2011)

  • Wollesen T, Loesel R, Wanninger A (2008) FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, Idiosepius notoides. Acta Biol Hung 59:111–116

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by DFG grant LO797/3-2, LO797/3-3 and SCHM1278/8-2, SCHM1278/8-3 as part of the Priority Program 1174—“Deep Metazoan Phylogeny” of the German Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Loesel.

Additional information

Communicated by T. Bartolomaeus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faller, S., Rothe, B.H., Todt, C. et al. Comparative neuroanatomy of Caudofoveata, Solenogastres, Polyplacophora, and Scaphopoda (Mollusca) and its phylogenetic implications. Zoomorphology 131, 149–170 (2012). https://doi.org/10.1007/s00435-012-0150-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-012-0150-7

Keywords

Navigation