Skip to main content
Log in

Innervation patterns of the cerebral nerves in Haminoea hydatis (Gastropoda: Opisthobranchia): a test for intraspecific variability

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

This study describes the innervation patterns for the cerebral nerves which project to the cephalic sensory organs (CSOs) in the opisthobranch Haminoea hydatis (Linnaeus 1758) and uses axonal tracing techniques (backfilling) to reveal the central cellular origins for these cerebral nerves. Cell clusters projecting into the cerebral nerves can be defined by their positions in the ganglion relative to other clusters, nerve roots and lobes. The number of cell clusters and the relative sizes of somata are constant in a given cluster, whereas the absolute number of somata and absolute sizes of single somata in a given cluster increase with the size of the animal. Additionally, the invariable morphological characteristics of the cell clusters are used to define criteria for the assessment of possible homology for the clusters innervating the CSOs in Opisthobranchia. The data suggest two different strategies to accommodate the increasing body size; first, the additions of nerve cells and second, the growth of nerve cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altman JS, Tyrer NM (1980) Filling selected neurons with cobalt through cut nerves. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques: insect nervous system. Springer, New York, pp 357–372

    Google Scholar 

  • Arbas EA (1991) Evolution in nervous systems. Annu Rev Neurosci 14:9–38. doi:10.1146/annurev.ne.14.030191.000301

    Article  PubMed  CAS  Google Scholar 

  • Audesirk TE (1979) Oral mechanoreceptors in Tritonia diomedea. J Comp Physiol 130:71–78. doi:10.1007/BF02582975

    Article  Google Scholar 

  • Bicker G, Davis WJ, Matera EM (1982) Chemoreception and mechanoreception in the gastropod mollusc Pleurobranchea californica. J Comp Physiol 149:235–250. doi:10.1007/BF00619217

    Article  Google Scholar 

  • Boudko DY, Switzer-Dunlap M, Hadfield MG (1999) Cellular and subcellular structure of anterior sensory pathways in Phestilla sibogae (Gastropda, Nudibranchia). J Comp Neurol 403:39–52. doi:10.1002/(SICI)1096-9861(19990105)403:1<39::AID-CNE4>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  • Cash D, Carew TJ (1989) A quantitative-analyses of the development of the central nervous system in juvenile Aplysia californica. J Neurobiol 20(1):25–47. doi:10.1002/neu.480200104

    Article  PubMed  CAS  Google Scholar 

  • Chase R (2002) In: Behavior and its neural control in gastropod molluscs. Oxford University Press, Oxford

    Google Scholar 

  • Chester CM (1993) Comparative feeding biology of Acteocina canaliculita (SAY, 1826) and Haminoea solitaria (SAY, 1822) (Opisthobranchia, Cephalaspidea). Am Mal Bull 10(1):93–101

    Google Scholar 

  • Chiasson BJ, Baker MW, Croll RP (1994) Morphological changes and functional recovery following axotomy of a serotonergic cerebrobuccal neurone in the land snail Achatina fulica. J Exp Biol 192:147–167

    PubMed  CAS  Google Scholar 

  • Coleman CO (2003) “Digital inking”. How to make perfect line drawings on computers. Organisms, Diversity and Evolution, Electronic Supplement. 14, 1–14, http://senckenberg.de/odes/03-14.htm

  • Croll RP (1983) Gastropod chemoreception. Biol Rev Camb Philos Soc 58(Suppl 3):293–319. doi:10.1111/j.1469-185X.1983.tb00391.x

    Google Scholar 

  • Croll RP (1987) Identified neurons and cellular homologies. In: Ali MA (ed) Nervous systems in invertebrates. Springer, New York, pp 41–59

    Google Scholar 

  • Croll RP, Chiasson BJ (1989) Postembryonic development of serotoninlike immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis. J Comp Neurol 280:122–142. doi:10.1002/cne.902800109

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Baker M (1990) Axonal regeneration and sprouting following injury to the cerebral-buccal connective in the snail Achatina fulica. J Comp Neurol 300:273–286. doi:10.1002/cne.903000210

    Article  PubMed  CAS  Google Scholar 

  • Croll RP, Boudko DY, Pires A, Hadfield MG (2003) Transmitter content of cells and fibers in the cephalic sensory organs of the gastropod mollusc Phestilla sibogae. Cell Tissue Res 314:437–448. doi:10.1007/s00441-003-0778-1

    Article  PubMed  CAS  Google Scholar 

  • Davis WJ, Matera EM (1982) Chemoreception in gastropod molluscs: electron microscopy of putative receptor cells. J Neurobiol 13(1):79–84. doi:10.1002/neu.480130109

    Article  PubMed  CAS  Google Scholar 

  • Dayrat B, Tillier S (2002) Evolutionary relationships of euthyneuran gastropods (Mollusca): a cladistic re-evaluationof morphological characters. Zool J Linn Soc 135:403–470. doi:10.1046/j.1096-3642.2002.00018.x

    Article  Google Scholar 

  • Edlinger K (1980) Zur Phylogenie der chemischen Sinnesorgane einiger Cephalaspidea (Mollusca, Opisthobranchia). Zeitschrift für Zoologie. Systematik Evolutionsforschung 18:241–256

    Google Scholar 

  • Elliott CJH, Susswein AJ (2002) Comparative neuroethology of feeding control in molluscs. J Exp Biol 205(7):877–896

    PubMed  CAS  Google Scholar 

  • Emery DG (1992) Fine structure of olfactory epithelia of gastropod molluscs. Microsc Res Tech 22:307–324. doi:10.1002/jemt.1070220402

    Article  PubMed  CAS  Google Scholar 

  • Fredman SM (1987) Intracellular staining of neurons with nickel-lysine. J Neurosci Methods 20(3):181–194. doi:10.1016/0165-0270(87)90050-1

    Article  PubMed  CAS  Google Scholar 

  • Goodman CS, Pearson KG, Heitler WJ (1979) Variability of identified neurons in grasshoppers. Comp Biochem Physiol 64A:455–462. doi:10.1016/0300-9629(79)90571-1

    Article  Google Scholar 

  • Gosliner TM (1994) Gastropoda: Opisthobranchia. In: Harrisson FE, Kohn AJ (eds) Microscopic anatomy of invertebrates, 5: Mollusca. Wiley, New York, pp 253–355

    Google Scholar 

  • Hauser M, Koopowitz H (1987) Age-dependent changes in fluorescent neurons in the brain of Notoplana acticola, a polyclad flatworm. J Exp Zool 241:217–225. doi:10.1002/jez.1402410208

    Article  PubMed  CAS  Google Scholar 

  • Hayman-Paul D (1991) Pedigrees of neurobehavioral circuits: tracing the evolution of novel behaviors by comparing motor patterns, muscles, and neurons in members of related taxa. Brain Behav Evol 38:226–239. doi:10.1159/000114390

    Article  Google Scholar 

  • Hoffmann H (1939) Mollusca. I Opisthobranchia. In: Bronns HG (ed) Klassen und Ordnungen des Tierreichs III (1). Akademische-Verlagsgesellschaft, Leipzig, pp 1–1248

    Google Scholar 

  • Hubendick B (1951) Recent Lymneidae: their variation, morphology, taxonomy, nomenclature and distribution. Almquist Wiksells Boktryckeriab, Stockholm

    Google Scholar 

  • Huber G (1993) On the cerebal nervous system of marine heterobranchia (Gastropoda). J Molluscan Stud 59:381–420. doi:10.1093/mollus/59.4.381

    Article  Google Scholar 

  • Kerkhoven RM, Croll RP, Van Minnen J, Bogerd J, Ramkema MD, Lodder H et al (1991) Axonal mapping of the giant peptidergic neurons VD1 and RPD2 located in the CNS of the pond snail Lymnaea stagnalis, with particular reference to the innervation of the auricle of the heart. Brain Res 565:8–16. doi:10.1016/0006-8993(91)91730-O

    Article  PubMed  CAS  Google Scholar 

  • Kutsch W, Breidbach O (1994) Homologous structures in the nervous systems of Arthropoda. Adv Insect Physiol 24:2–113

    Google Scholar 

  • Newcomb JM, Fickbohm DJ, Katz PS (2006) Comparative mapping of serotonin-immunoreactive neurons in the central nervous system of nudibranch molluscs. J Comp Neurol 499:485–505. doi:10.1002/cne.21111

    Article  PubMed  Google Scholar 

  • Ogawa F (1939) The nervous system of earthworm (Pheretima communissima) in different ages. Science reports of the Tohoku Imperial University (Series 4) 8:395–488

    Google Scholar 

  • Salvini-Plawen L, Steiner G (1996) Synapomorphies and plesiomorphies in higher classification of mollusca. In: Taylor J (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, Oxford, pp 29–51

    Google Scholar 

  • Stewart RR, Spergel D, Macagno ER (1986) Segmental differentiation in the leech nervous system: the genesis of cell number in the segmental ganglia of Haemopsis marmorata. J Comp Neurol 253:253–259. doi:10.1002/cne.902530211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Claudia Nesselhauf for her help to build up the laboratory population of H. hydatis. The Aquazoo Düsseldorf and Dr. Ulrike Schulte-Oehlmann kindly provided the first animals. This study was supported by the German Science Foundation, KL 1303/3-1 and by the Verein der Freunde und Förderer der Johann-Wolfgang-Goethe Universität.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sid Staubach.

Electronic supplementary material

Below are the links to the electronic supplementary material.

435_2008_64_MOESM1_ESM.xls

Table of the number of specimen, shell size calculated by the product of length and breadth in mm2 and maximum diameter of somata (in μm) within the cerebral clusters projecting into the N2 (27.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staubach, S., Schützner, P., Croll, R.P. et al. Innervation patterns of the cerebral nerves in Haminoea hydatis (Gastropoda: Opisthobranchia): a test for intraspecific variability. Zoomorphology 127, 203–212 (2008). https://doi.org/10.1007/s00435-008-0064-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-008-0064-6

Keywords

Navigation